【題目】給定正整數(shù).將三種水果分裝在個(gè)箱子中.試求最小的正整數(shù),使得無(wú)論水果如何分布,總可選出個(gè)箱子,它們所裝的三種水果都不少于各自總量的一半.
【答案】
【解析】
記三種水果為、、,表示第個(gè)箱子中所裝的水果的量.
考慮這樣的分布:一只箱子裝所有的水果,另一只箱子裝所有的水果,其余只箱子平均裝所有的水果.
顯然,,其中,表示不超過(guò)實(shí)數(shù)的最大整數(shù).
下證:就是所求的最小值
首先證明一個(gè)引理.
引理 只箱子中裝有、兩種水果,單箱水果的最大值為,水果的最大值為則可將所有的箱子分為、兩組,每組只箱子,使得
,
.
證明 設(shè)
令,.則.
假定已將,,,,等分為,,
滿足.
不妨設(shè),和中水果較少的為,較多的為.
令,
則
.
依此,全部只箱子分為兩組
,,且
不妨設(shè).
注意到,由原來(lái)的排序知
則.
回到原題.
當(dāng)為偶數(shù)時(shí),設(shè)第1箱中水果最多,余下的箱中第2箱水果最多,另外箱依引理等分為、兩組.
設(shè).由,
知所裝的三種水果都不少于各自總量的一半,且其箱子數(shù)為.
當(dāng)為奇數(shù)時(shí),先任取一箱,余下的箱同上處理,共取出箱,所裝的三種水果都不少于各自總量的一半.
因此,所求的在的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過(guò)個(gè)國(guó)家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國(guó)家或地區(qū)直接宣布“封國(guó)”或“封城”,隨著國(guó)外部分活動(dòng)進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開(kāi)始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:
企業(yè)成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企業(yè)成立年限 | 1 | 2 | 3 | 4 | 5 |
倒閉企業(yè)數(shù)量(萬(wàn)家) | 5.28 | 4.72 | 3.58 | 2.70 | 2.15 |
倒閉企業(yè)所占比例 | 21.4% | 19.1% | 14.5% | 10.9% | 8.7% |
(1)由所給數(shù)據(jù)可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)建立關(guān)于的回歸方程,預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例.
參考數(shù)據(jù):,,,,
相關(guān)系數(shù),樣本的最小二乘估計(jì)公式為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】,.
(1)若在是增函數(shù),求實(shí)數(shù)a的范圍;
(2)若在上最小值為3,求實(shí)數(shù)a的值;
(3)若在時(shí)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的極值點(diǎn)個(gè)數(shù);
(2)若,證明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有2013位來(lái)自不同國(guó)家的代表參加一個(gè)會(huì)議,每位代表都懂得若干種語(yǔ)言,已知其中任意四位代表之間都可進(jìn)行交談而不需要此四位代表以外的其他人幫助,即此四人中的任意兩人都能講同一種語(yǔ)言而實(shí)現(xiàn)直接溝通,或者通過(guò)第三個(gè)人的翻譯實(shí)現(xiàn)間接溝通,或者通過(guò)他們各自的翻譯能講的同一種語(yǔ)言實(shí)現(xiàn)低效的間接溝通,證明:可以將所有代表分配住進(jìn)671個(gè)房間,每個(gè)房間住3人,使得每個(gè)房間的3人都可以交談。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過(guò)橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com