【題目】設(shè)函數(shù).

(1)求函數(shù)的極值點個數(shù);

(2)若,證明 .

【答案】(1)2個(2)詳見解析

【解析】

(1)由是奇函數(shù),把問題轉(zhuǎn)化成的極值點個數(shù)問題,求出,把的正負問題轉(zhuǎn)化成正負來處理,求出,判斷的單調(diào)性,結(jié)合函數(shù)零點判斷方法即可判斷在區(qū)間上存在唯一的使.在上不存在使得,問題得解。

(2)利用(1)中的結(jié)論可知:在區(qū)間內(nèi)恒成立.令,可將問題轉(zhuǎn)化成 ,問題得證。

解:(1)因為為奇函數(shù),其圖像關(guān)于原點對稱,所以只需考慮上的極值點個數(shù),

,時,

.

,,

∴當時,,單調(diào)遞減,

時,,單調(diào)遞增,

.

,

∴在區(qū)間上存在唯一的使.

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

為奇函數(shù),

在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

的極值點共2個.

(2)由(1)可知在區(qū)間內(nèi)單調(diào)遞減,且恒成立.

時,

即得.

又令,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一種拋硬幣游戲的規(guī)則是:拋擲一枚硬幣,每次正面向上得1分,反面向上得2分

1設(shè)拋擲5次的得分為,求的分布列和數(shù)學期望;

2求恰好得到分的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某工廠每天的固定成本是4萬元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價定為a元時,生產(chǎn)x件產(chǎn)品的銷售收入為(元),為每天生產(chǎn)x件產(chǎn)品的平均利潤(平均利潤=總利潤/總產(chǎn)量).銷售商從工廠每件a元進貨后又以每件b元銷售,,其中c為最高限價,為該產(chǎn)品暢銷系數(shù).據(jù)市場調(diào)查,由當的比例中項時來確定.

1)每天生產(chǎn)量x為多少時,平均利潤取得最大值?并求出的最大值;

2)求暢銷系數(shù)的值;

3)若,當廠家平均利潤最大時,求ab的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線的參數(shù)方程為(t為參數(shù)),以原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,曲線關(guān)于對稱.

(1)求極坐標方程,直角坐標方程;

(2)將向左平移4個單位長度,按照變換得到與兩坐標軸交于兩點,上任一點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分) 由0,1,2,3,4,5這六個數(shù)字。

(1)能組成多少個無重復數(shù)字的四位數(shù)?

(2)能組成多少個無重復數(shù)字的四位偶數(shù)?

(3)能組成多少個無重復數(shù)字且被25個整除的四位數(shù)?

(4)組成無重復數(shù)字的四位數(shù)中比4032大的數(shù)有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線的參數(shù)方程為(t為參數(shù)),以原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,曲線關(guān)于對稱.

(1)求極坐標方程,直角坐標方程;

(2)將向左平移4個單位長度,按照變換得到與兩坐標軸交于兩點,上任一點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.

(1)求橢圓的方程;

(2)設(shè)分別為橢圓的左,右焦點,過作直線 (與軸不重合)交橢圓于, 兩點,線段的中點為,記直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為且橢圓上存在一點,滿足.

(1)求橢圓的標準方程;

(2)已知分別是橢圓的左、右頂點,過的直線交橢圓兩點,記直線的交點為,是否存在一條定直線,使點恒在直線上?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有2012位學者參加某數(shù)學會議,他們中有些人相互認識,且滿足:

(1)每個人至少認識其中的671個人;

(2)對于其中任意兩個人、,若、相互不認識,則總可以通過其他人間接認識,即存在,使得認識,認識,認識

(3)不可以將2012位學者排成一排,使得相鄰的兩個人相互認識.

證明:可以將2012位學者分成兩組,其中一組能夠排成一圈,使得相鄰的人相互認識,另一組任何兩個人不認識.

查看答案和解析>>

同步練習冊答案