【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價格為7元/千克時,每日可售出該商品11千克.
(Ⅰ)求的值;
(Ⅱ)若該商品的成本為5元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.
【答案】(Ⅰ) ;(Ⅱ) 當銷售價格為6元/千克時,商場每日銷售該商品所獲得的利潤最大.
【解析】分析:(Ⅰ)將代入,即可得解;
(Ⅱ)由(1)知,該商品每日的銷售量,進而得利潤
,求導數(shù),利用函數(shù)單調(diào)性求最值即可.
詳解:(Ⅰ)因為時,,
所以,.
(Ⅱ)由(1)知,該商品每日的銷售量,
所以商場每日銷售該商品所獲得的利潤
于是,當變化時,,的變化情況如下表:
(5,6) | 6 | (6,8) | |
+ | 0 | - | |
單調(diào)增 | 極大值 | 單調(diào)減 |
由上表可得,=6是函數(shù)在區(qū)間(5,8)內(nèi)的極大值點,也是最大值點.所以,當=6時,函數(shù)取得最大值,且最大值等于42.
所以,當銷售價格為6元/千克時,商場每日銷售該商品所獲得的利潤最大.
科目:高中數(shù)學 來源: 題型:
【題目】已知F1、F2分別是雙曲線的左、右焦點,且雙曲線C的實軸長為6,離心率為.
(1)求雙曲線C的標準方程;
(2)設(shè)點P是雙曲線C上任意一點,且|PF1|=10,求|PF2|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)= +log2(6﹣x)的定義域是( )
A.{x|x>6}
B.{x|﹣3<x<6}
C.{x|x>﹣3}
D.{x|﹣3≤x<6}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=lnx+x2﹣bx.
(1)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)當b=﹣1時,設(shè)g(x)=f(x)﹣2x2 , 求證函數(shù)g(x)只有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一個偶數(shù)組成的數(shù)陣排列如下:
2 4 8 14 22 32 …
6 10 16 24 34 … …
12 18 26 36 … … …
20 28 38 … … … …
30 40 … … … … …
42 … … … … … …
… … … … … … …
則第20行第4列的數(shù)為( )
A. 546 B. 540 C. 592 D. 598
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求證:方程有實根;
(2)在上是單調(diào)遞減函數(shù),求實數(shù)的取值范圍;
(3)當時,關(guān)于的不等式的解集為空集,求所有滿足條件的實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)為了解某校今年高一年級女生的身體素質(zhì)狀況,從該校高一年級女生中抽取了一部分學生進行“擲鉛球”的項目測試,成績低于5米為不合格,成績在5至7米(含5米不含7米)的為及格,成績在7米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在9米到11米之間.
(1)求實數(shù)的值及參加“擲鉛球”項目測試的人數(shù);
(2)若從此次測試成績最好和最差的兩組中隨機抽取2名學生再進行其它項目的測試,求所抽取的2名學生自不同組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com