精英家教網 > 高中數學 > 題目詳情
8.若(2x2+$\frac{1}{x}$)nn∈N*的二項展開式中的第9項是常數項,則n=12.

分析 利用二項展開式的通項公式,求得第九項,再根據第9項是常數項,則求得n的值.

解答 解:∵(2x2+$\frac{1}{x}$)nn∈N*的二項展開式中的第9項為${C}_{n}^{8}$•2n-8•x2n-24是常數項,
∴2n-24=0,∴n=12,
故答案為:12.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數,二項式系數的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.冪函數y=x-1不具有的特性是   ( 。
A.在定義域內是減函數B.圖象過定點(1,1)
C.是奇函數D.其定義域是R

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知直線m過點A(2,-3),且在兩個坐標軸上的截距相等,則直線m的方程是( 。
A.3x+2y=0B.x+y+1=0
C.x+y+1=0或3x+2y=0D.x+y-1=0或3x-2y=0

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設M、N為兩個隨機事件,給出以下命題:
(1)若M、N為互斥事件,且$P(M)=\frac{1}{5}$,$P(N)=\frac{1}{4}$,則$P(M∪N)=\frac{9}{20}$;
(2)若$P(M)=\frac{1}{2}$,$P(N)=\frac{1}{3}$,$P(MN)=\frac{1}{6}$,則M、N為相互獨立事件;
(3)若$P(\overline M)=\frac{1}{2}$,$P(N)=\frac{1}{3}$,$P(MN)=\frac{1}{6}$,則M、N為相互獨立事件;
(4)若$P(M)=\frac{1}{2}$,$P(\overline N)=\frac{1}{3}$,$P(MN)=\frac{1}{6}$,則M、N為相互獨立事件;
(5)若$P(M)=\frac{1}{2}$,$P(N)=\frac{1}{3}$,$P(\overline{MN})=\frac{5}{6}$,則M、N為相互獨立事件;
其中正確命題的個數為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知M={x||x-1|≤2,x∈R},P={x|$\frac{1-x}{x+2}$≥0,x∈R},則M∩P等于[-1,1].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.在正三棱柱ABC-A1B1C1中,AB=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大。
(2)四棱錐A1-B1BCC1的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.若正項等比數列{an}滿足:a3+a5=4,則a4的最大值為2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.用半徑1米的半圓形薄鐵皮制作圓錐型無蓋容器,其容積為$\frac{\sqrt{3}π}{24}$立方米.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如果一個數列從第2項起,每一項與它前一項的差都大于2,則稱這個數列為“H型數列”.
(1)若數列{an}為“H型數列”,且a1=$\frac{1}{m}$-3,a2=$\frac{1}{m}$,a3=4,求實數m的取值范圍;
(2)是否存在首項為1的等差數列{an}為“H型數列”,且其前n項和Sn滿足Sn<n2+n(n∈N*)?若存在,請求出{an}的通項公式;若不存在,請說明理由.
(3)已知等比數列{an}的每一項均為正整數,且{an}為“H型數列”,bn=$\frac{2}{3}$an,cn=$\frac{{a}_{n}}{(n+1)•{2}^{n-5}}$,當數列{bn}不是“H型數列”時,試判斷數列{cn}是否為“H型數列”,并說明理由.

查看答案和解析>>

同步練習冊答案