精英家教網 > 高中數學 > 題目詳情

雙曲線數學公式的左、右焦點分別為F1,F2,在左支上過點F1的弦AB的長為5,那么△ABF2的周長是


  1. A.
    12
  2. B.
    16
  3. C.
    21
  4. D.
    26
D
分析:依題意,利用雙曲線的定義可求得|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,從而可求得△ABF2的周長.
解答:依題意,|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,
∴(|AF2|-|AF1|)+(|BF2|-|BF1|)=16,又|AB|=5,
∴(|AF2|+|BF2|)=16+(|AF1|+|BF1|)=16+|AB|=16+5=21.
∴|AF2|+|BF2|+|AB|=21+5=26.
即△ABF2的周長是26.
故選D.
點評:本題考查雙曲線的簡單性質,著重考查雙曲線定義的靈活應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•天津模擬)如圖,橢圓
x
2
 
a
2
 
+
y
2
 
b2
=1(a>b>0)
與一等軸雙曲線相交,M是其中一個交點,并且雙曲線在左、右頂點分別是該橢圓的左、右焦點F1、F2,雙曲線的左、右焦點分別是橢圓左、右頂點,△MF1F2的周長為(4
2
+1
),設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A,B和C,D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,求證:k1•k2=1;
(3)是否存在常數λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線的左、右焦點分別是、,其一條漸近線方程為,點在雙曲線上.則·

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

(川卷文理)已知雙曲線的左、右焦點分別是、,其一條漸近線方程為,點在雙曲線上.則·=(   )

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線的左、右焦點分別是、,其一條漸近線方程為,點在雙曲線上.則·

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中數學 來源:2010年山東省高三12月月考理科數學卷 題型:填空題

已知雙曲線的左、右焦點分別是,其一條漸近線方程為,點在雙曲線上.則·         

 

查看答案和解析>>

同步練習冊答案