【題目】在平面直角坐標(biāo)系xoy中,動(dòng)點(diǎn)M到點(diǎn)F(1,0)的距離與它到直線x=2的距離之比為 . (Ⅰ)求動(dòng)點(diǎn)M的軌跡E的方程;
(Ⅱ)設(shè)直線y=kx+m(m≠0)與曲線E交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn)(且C,D在A,B之間或同時(shí)在A,B之外).問:是否存在定值k,對(duì)于滿足條件的任意實(shí)數(shù)m,都有△OAC的面積與△OBD的面積相等,若存在,求k的值;若不存在,說明理由.
【答案】解:(Ⅰ)設(shè)M(x,y),由題意可得 = , 兩邊平方可得x2+y2﹣2x+1= (x2﹣4x+4),
即有 +y2=1,
可得軌跡E的方程為 +y2=1;
(Ⅱ)聯(lián)立 ,消去y,可得(1+2k2)x2+4kmx+2m2﹣2=0,
△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(2k2﹣m2+1),
由△>0,可得m2<1+2k2(*),
設(shè)A(x1 , y1),B(x2 , y2),則x1+x2=﹣ ,
由題意可設(shè)C(﹣ ,0),D(0,m),
△OAC的面積與△OBD的面積相等|AC|=|BD|恒成立
線段AB的中點(diǎn)和線段CD中點(diǎn)重合.
即有﹣ =﹣ ,解得k=± ,
即存在定值k=± ,對(duì)于滿足條件的m≠0,且|m|<
的任意實(shí)數(shù)m,都有△OAC的面積與△OBD的面積相等
【解析】(Ⅰ)設(shè)M(x,y),運(yùn)用兩點(diǎn)的距離公式和點(diǎn)到直線的距離公式,兩邊平方整理即可得到所求軌跡E的方程;(Ⅱ)聯(lián)立直線方程和橢圓方程,消去y,可得x的方程,運(yùn)用判別式大于0,以及韋達(dá)定理,求得C,D的坐標(biāo),由△OAC的面積與△OBD的面積相等|AC|=|BD|恒成立線段AB的中點(diǎn)和線段CD中點(diǎn)重合.運(yùn)用中點(diǎn)坐標(biāo)公式,解方程可得k的值,即可判斷存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+bx+cx , 其中c>a>0,c>b>0,若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是( ) ①對(duì)任意x∈(﹣∞,1),都有f(x)<0;
②存在x∈R,使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長;
③若△ABC為鈍角三角形,存在x∈(1,2),使f(x)=0.
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)一組數(shù)據(jù)51,54,m,57,53的平均數(shù)是54,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線l1:ax+3y+6=0,l2:2x+(a+1)y+6=0與圓C:x2+y2+2x=b2-1(b>0)的位置關(guān)系是“平行相交”,則實(shí)數(shù)b的取值范圍為 ( )
A.( , )
B.(0, )
C.(0, )
D.( , )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點(diǎn)在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)是定義在R上的奇函數(shù),且在區(qū)間(﹣∞,0]上是減函數(shù),則不等式f(lnx)<﹣f(1)的解集為( )
A.(e,+∞)
B.( ,+∞)
C.( ,e)
D.(0, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an},a1=1,a6=32,Sn是等差數(shù)列{bn}的前n項(xiàng)和,b1=3,S5=35.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出的是計(jì)算 + + +…+ 的值的程序框圖,其中判斷框內(nèi)可填入的是( )
A.i≤2 021?
B.i≤2 019?
C.i≤2 017?
D.i≤2 015?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com