【題目】若函數(shù)y=f(x)是定義在R上的奇函數(shù),且在區(qū)間(﹣∞,0]上是減函數(shù),則不等式f(lnx)<﹣f(1)的解集為( )
A.(e,+∞)
B.( ,+∞)
C.( ,e)
D.(0, )
【答案】B
【解析】解:函數(shù)y=f(x)是定義在R上的奇函數(shù),且在區(qū)間(﹣∞,0]上是減函數(shù), ∴f(x)在(0,+∞)上也是減函數(shù),故函數(shù)f(x)在R上單調(diào)遞減.
不等式f(lnx)<﹣f(1),即不等式f(lnx)<f(﹣1),
∴l(xiāng)nx>﹣1,x> ,
故選:B.
【考點精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點,需要掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】和諧高級中學(xué)共有學(xué)生570名,各班級人數(shù)如表:
一班 | 二班 | 三班 | 四班 | |
高一 | 52 | 51 | y | 48 |
高二 | 48 | x | 49 | 47 |
高三 | 44 | 47 | 46 | 43 |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二年級學(xué)生的概率是 .
(1)求x,y的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取114名學(xué)生,應(yīng)分別在各年級抽取多少名?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓拱橋的示意圖如圖所示,該圓拱的跨度AB是36 m,拱高OP是6 m,在建造時,每隔3 m需用一個支柱支撐,求支柱A2P2的長.(精確到0.01 m)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,動點M到點F(1,0)的距離與它到直線x=2的距離之比為 . (Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)設(shè)直線y=kx+m(m≠0)與曲線E交于A,B兩點,與x軸、y軸分別交于C,D兩點(且C,D在A,B之間或同時在A,B之外).問:是否存在定值k,對于滿足條件的任意實數(shù)m,都有△OAC的面積與△OBD的面積相等,若存在,求k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:關(guān)于x的不等式x2+(a﹣1)x+1≤0的解集為;命題q:方程 表示焦點在y軸上的橢圓;若命題q為真命題,p∨q為真命題.
(1)求實數(shù)a的取值范圍;
(2)判斷方程(a+1)x2+(1﹣a)y2=(a+1)(1﹣a)所表示的曲線的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=3,Sn+1=3(Sn+1)(n∈N*). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)在數(shù)列{bn}中,b1=9,bn+1﹣bn=2(an+1﹣an)(n∈N*),若不等式λbn>an+36(n﹣4)+3λ對一切n∈N*恒成立,求實數(shù)λ的取值范圍;
(Ⅲ)令Tn= + + +…+ (n∈N*),證明:對于任意的n∈N* , Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市隨機(jī)抽取一個月(30天)的空氣質(zhì)量指數(shù)API監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | (300,350] |
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數(shù) | 2 | 4 | 5 | 9 | 4 | 3 | 3 |
(Ⅰ)根據(jù)以上數(shù)據(jù)估計該城市這30天空氣質(zhì)量指數(shù)API的平均值;
(Ⅱ)若該城市某企業(yè)因空氣污染每天造成的經(jīng)濟(jì)損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為w)的關(guān)系式為:
S=
若在本月30天中隨機(jī)抽取一天,試估計該天經(jīng)濟(jì)損失S大于200元且不超過600元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com