【題目】已知橢圓的一個(gè)焦點(diǎn)為,左右頂點(diǎn)分別為.經(jīng)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓方程及離心率.
(2)當(dāng)直線的傾斜角為時(shí),求線段的長(zhǎng);
(3)記的面積分別為和,求最大值.
【答案】(1) ; (2);(3).
【解析】
(1)由焦點(diǎn)坐標(biāo)可求出c的值,根據(jù)a,b,c的平方關(guān)系可求得a的值;(2)寫出直線方程,與橢圓方程聯(lián)立得到關(guān)于x的一元二次方程,利用韋達(dá)定理及弦長(zhǎng)公式即可求得;(3)當(dāng)直線l的斜率不存在時(shí)可求得;當(dāng)直線l斜率存在時(shí),設(shè)出直線方程并與橢圓方程聯(lián)立得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理用k表示出,,轉(zhuǎn)化為關(guān)于的式子,再轉(zhuǎn)化為關(guān)于k的表達(dá)式,利用基本不等式即可求得最大值.
(1)因?yàn)?/span>為橢圓的焦點(diǎn),所以,又,
所以,橢圓方程為,離心率為;
(2)直線l的斜率為且過(guò)點(diǎn),則直線l的方程為,
與橢圓方程聯(lián)立,得到,
所以,
;
(3)當(dāng)直線l的斜率不存在時(shí),直線方程為,
此時(shí),,的面積相等,;
當(dāng)直線l的斜率存在(顯然)時(shí),設(shè)直線方程為,
設(shè),
直線方程與橢圓方程聯(lián)立得,消y得,
顯然,方程有根,且,,
此時(shí),
,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.
綜上所述,的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4acosθ,直線l與曲線C交于不同的兩點(diǎn)M,N.
(1)求實(shí)數(shù)a的取值范圍;
(2)已知a>0,設(shè)點(diǎn)P(﹣1,﹣2),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年國(guó)際乒聯(lián)總決賽在韓國(guó)仁川舉行,比賽時(shí)間為12月13﹣12月16日,在男子單打項(xiàng)目,中國(guó)隊(duì)準(zhǔn)備選派4人參加.已知國(guó)家一線隊(duì)共6名隊(duì)員,二線隊(duì)共4名隊(duì)員.
(1)求恰好有3名國(guó)家一線隊(duì)隊(duì)員參加比賽的概率;
(2)設(shè)隨機(jī)變量X表示參加比賽的國(guó)家二線隊(duì)隊(duì)員的人數(shù),求X的分布列;
(3)男子單打決賽是林高遠(yuǎn)(中國(guó))對(duì)陣張本智和(日本),比賽采用七局四勝制,已知在每局比賽中,林高遠(yuǎn)獲勝的概率為,張本智和獲勝的概率為,前兩局比賽雙方各勝一局,且各局比賽的結(jié)果相互獨(dú)立,求林高遠(yuǎn)獲得男子單打冠軍的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)在上的單調(diào)性,并證明;
(2)若恒成立,求的最小值;
(3)記,求集合中正整數(shù)的個(gè)數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是半圓的直徑,是半圓上除點(diǎn)外的一個(gè)動(dòng)點(diǎn),垂直于所在的平面,垂足為,,且,.
(1)證明:平面平面;
(2)當(dāng)為半圓弧的中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),圓,過(guò)R點(diǎn)的直線交圓于M,N兩點(diǎn)過(guò)R點(diǎn)作直線交SM于Q點(diǎn).
(1)求Q點(diǎn)的軌跡方程;
(2)若A,B為Q的軌跡與x軸的左右交點(diǎn),為該軌跡上任一動(dòng)點(diǎn),設(shè)直線AP,BP分別交直線l:于點(diǎn)M,N,判斷以MN為直徑的圓是否過(guò)定點(diǎn)。如圓過(guò)定點(diǎn),則求出該定點(diǎn);如不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實(shí)數(shù)的值;
(2)設(shè),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,△DAB≌△DCB,E為線段BD上的點(diǎn),且EA=EB=ED=AB,延長(zhǎng)CE交AD于點(diǎn)F.
(1)若G為PD的中點(diǎn),求證平面PAD⊥平面CGF;
(2)若AD=AP=6,求平面BCP與平面DCP所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com