給出下列五個命題:
①若4a=3,log45=b,則log4
95
=a2-b
;
②函數(shù)f(x)=0.51+2x-x2的單調(diào)遞減區(qū)間是[1,+∞);
③m≥-1,則函數(shù)y=lg(x2-2x-m)的值域為R;
④若映射f:A→B為單調(diào)函數(shù),則對于任意b∈B,它至多有一個原象;
⑤函數(shù)y=ex的圖象與函數(shù)y=f(x)的圖象關(guān)于直線y=x對稱,則f(e3)=3.
其中正確的命題是
③④⑤
③④⑤
(把你認(rèn)為正確的命題序號都填在橫線上)
分析:由已知可得log43=a,log45=b,結(jié)合對數(shù)的運算性質(zhì),可判斷①的真假;
根據(jù)指數(shù)函數(shù)的單調(diào)性,二次函數(shù)的單調(diào)性及復(fù)合函數(shù)“同增異減”的原則,可判斷②的真假;
由于對數(shù)函數(shù)值域是R,則只需讓真數(shù)取遍(0,+∞)內(nèi)的所有實數(shù)即可,即需讓(0,+∞)為函數(shù)t=x2-2x-m值域的子集,求出m的范圍可判斷③的真假.
根據(jù)單調(diào)函數(shù)的圖象和性質(zhì)及函數(shù)一一映射的定義,可判斷④的真假
根據(jù)同底的指數(shù)函數(shù)和對數(shù)函數(shù)互為反函數(shù),圖象關(guān)于直線y=x對稱,求出函數(shù)y=f(x)的解析式,代入求值,可判斷⑤的真假.
解答:解:由4a=3可得log43=a,結(jié)合log45=b,可得log4
9
5
=log49-log45=2log43-log45=2a-b,故①錯誤;
函數(shù)y=0.5u為減函數(shù),函數(shù)u=1+2x-x2在區(qū)間[1,+∞)上也為減函數(shù),根據(jù)復(fù)合函數(shù)“同增異減”的原則,可得函數(shù)在區(qū)間[1,+∞)上為增函數(shù),故②錯誤;
由于對數(shù)函數(shù)y=lg(x2-2x-m)的值域是R,則需讓真數(shù)t=x2-2x-m的值取遍(0,+∞)內(nèi)的所有實數(shù),即△=4+4m≥0,解得m≥-1,故③正確.
對于④,根據(jù)單調(diào)函數(shù)的定義知函數(shù)必為一一映射,反之,由一一映射確定的函數(shù)關(guān)系不一定是單函數(shù),所以④正確.
函數(shù)y=ex的圖象與函數(shù)y=f(x)的圖象關(guān)于直線y=x對稱,則y=f(x)=lnx,∴f(e3)=lne3=3,故⑤正確
故答案為:③④⑤
點評:本題以命題的真假判斷為載體考查了對數(shù)的運算性質(zhì),復(fù)合函數(shù)的單調(diào)性,函數(shù)的值域,函數(shù)的單調(diào)性,反函數(shù)等知識點,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:
①在三角形ABC中,若A>B則sinA>sinB;
②若數(shù)列{bn}的前n項和Sn=n2+2n+1.則數(shù)列{bn}從第二項起成等差數(shù)列;
③已知Sn是等差數(shù)列{an}的前n項和,若S7>S8則S9>S8;
④已知等差數(shù)列{an}的前n項和為Sn,若a5=5a3
S9S5
=9;
⑤若{an}是等比數(shù)列,且Sn=3n+1+r,則r=-1;
其中正確命題的序號為:
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:其中正確的命題有
②③⑤
②③⑤
(填序號).
①若
a
b
=0,則一定有
a
b
;  ②?x,y∈R,sin(x-y)=sinx-siny;
③?a∈(0,1)∪(1,+∞),函數(shù)f(x)=a1-2x+1都恒過定點(
1
2
,2)
;
④方程x2+y2+Dx+Ey+F=0表示圓的充要條件是D2+E2-4F≥0;
⑤若存在有序?qū)崝?shù)對(x,y),使得
OP
=x
OA
+y
OB
,則O,P,A,B四點共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)已知f(x)在x∈[a,b]上的最大值為M,最小值為m,給出下列五個命題:
①若對任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,m];
②若對任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,M];
③若關(guān)于x的方程p=f(x)在區(qū)間[a,b]上有解,則p的取值范圍是[m,M];
④若關(guān)于x的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,m];
⑤若關(guān)于x的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,M];
其中正確命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:其中正確的命題有
②③④
②③④
(填序號).
①函數(shù)y=sinx(x∈[-π,π])的圖象與x軸圍成的圖形的面積S=
π
sinxdx

C
r+1
n+1
=
C
r+1
n
+
C
r
n
;
③在(a+b)n的展開式中,奇數(shù)項的二項式系數(shù)之和等于偶數(shù)項的二項式系數(shù)之和;
④i+i2+i3+…i2012=0;
⑤用數(shù)學(xué)歸納法證明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的過程中,由假設(shè)n=k成立推到n=k+1成立時,只需證明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>

同步練習(xí)冊答案