等差數(shù)列{an}中有兩項(xiàng)am和ak滿足(其中m,k∈N*,且m≠k),則該數(shù)列前mk項(xiàng)之和是( )
A.
B.
C.
D.
【答案】分析:利用等差數(shù)列的性質(zhì)先求出公差d==,再根據(jù)a1+(m-1)d=am,求出a1,進(jìn)而求出amk,然后用求和公式求解即可.
解答:解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
由等差數(shù)列的性質(zhì)以及已知條件得d==
∵a1+(m-1)d=am,
∴a1=-(m-1)=,
∴amk=+(mk-1)=1,
∴smk=×mk=,
故選C.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式,熟練應(yīng)用公式是解題的關(guān)鍵,同時(shí)還考查了學(xué)生的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中有12項(xiàng),奇數(shù)項(xiàng)與偶數(shù)項(xiàng)的和分別是30與90,則公差d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中有兩項(xiàng)am和ak滿足am=
1
k
ak=
1
m
(其中m,k∈N*,且m≠k),則該數(shù)列前mk項(xiàng)之和是(  )
A、
mk
2
-1
B、
mk
2
C、
mk+1
2
D、
mk
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}中有a6+a9+a12+a15=20,則其前20項(xiàng)和等于
100
100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中有性質(zhì):a1+a2+a3+…+a2n-1=(2n-1)an(n∈N+),類比這一性質(zhì),試在等比數(shù)列{bn}中寫出一個(gè)結(jié)論:
b1b2…b2n-1=
b
2n-1
n
(n∈N+).
b1b2…b2n-1=
b
2n-1
n
(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中有兩項(xiàng)amak滿足am=,ak=,則該數(shù)列前mk項(xiàng)之和是         .

查看答案和解析>>

同步練習(xí)冊(cè)答案