已知:a1=1,an+1-an=n,求{an}通項公式.
考點:數(shù)列遞推式
專題:計算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)已知,{an+1-an}是一個等差數(shù)列,即可得出結(jié)論.
解答: 解:n≥2,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(n-1)+…+2+1+1
=
n(n-1)
2
+1,
n=1時,也成立,
所以數(shù)列{an}的通項公式為an=
n(n-1)
2
+1.
點評:本題主要考查由遞推公式推導(dǎo)數(shù)列的通項公式,通過變形我們要發(fā)現(xiàn)數(shù)列的規(guī)律,轉(zhuǎn)化到等差或等比數(shù)列上來,就會很容易解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)0<x<
π
2
時,求證:x-sinx<
1
6
x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β三次函數(shù)f(x)=
1
3
x3+
1
2
ax2
+2bx(a,b∈R)的兩個極值點,且α∈(0,1)β∈(1,2)求動點(a,b)所在區(qū)域的面積為( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺,記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數(shù)列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin(2x+
π
3
)+1(a>0)的定義域為R,若當(dāng)-
12
≤x≤-
π
12
時,f(x)的最大值為2.
(1)求a的值;
(2)求圖象的對稱軸方程與對稱中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x+4|+|x-3|-9.
(1)畫出函數(shù)y=f(x)的圖象;
(2)若當(dāng)x∈[-4,3]時不等式f(x)<2a+1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將下面用分析法證明
a2+b2
2
≥ab的步驟補充完整;要證
a2+b2
2
≥ab,只需證a2+b2≥2ab,也就是證
 
,即證
 
,由于
 
顯然成立,因此原不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x3-x+c,若實數(shù)a,b,當(dāng)a+b≤0,則下列正確的是(  )
A、f(a)+f(b)≤-[f(a)+f(b)]
B、f(a)+f(b)≤f(-a)+f(-b)
C、f(a)+f(b)≥-[f(a)+f(b)]
D、f(a)+f(b)≥f(-a)+f(-b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一架鋼琴挑出的十個音鍵中,分別選擇3個,4個,5個,…,10個鍵同時按下,可發(fā)出和聲,若有一個音鍵不同,則發(fā)出不同的和聲,則這樣的不同的和聲數(shù)為
 
(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案