11.在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上隨機取一個數(shù)x,cosx的值介于0到$\frac{1}{2}$之間的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 本題是幾何概型,首先求出滿足cosx∈(0,$\frac{1}{2}$)的x 范圍,利用區(qū)間長度比求概率.

解答 解:在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上隨機取一個數(shù)x,等于區(qū)間長度為π,cosx的值介于0到$\frac{1}{2}$之間的x范圍為[$-\frac{π}{2}$,-$\frac{π}{3}$]∪[$\frac{π}{3}$,$\frac{π}{2}$].區(qū)間長度為$\frac{π}{3}$,由幾何概型的公式得到所求概率為$\frac{\frac{π}{3}}{π}=\frac{1}{3}$;
故選A.

點評 本題考查了幾何概型的概率求法;關(guān)鍵是明確幾何測度,利用區(qū)間長度的比求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短軸端點到右焦點F(1,0)的距離為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F的直線交橢圓C于A,B兩點,交直線l:x=4于點P,若|PA|=λ1|AF|,|PB|=λ2|BF|,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)計算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的結(jié)果猜想一個普遍的結(jié)論,并加以證明;
(3)求值f(1)+f(2)+…+f(2017)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2017}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知定義域為正整數(shù)集的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x,x為偶數(shù)}\\{x-1,x為奇數(shù)}\end{array}\right.$,f1(x)=f(x),fn(x)=f[fn-1(x)].若fn(21)=1,則n=6;若f4(x)=1,則x所有的值構(gòu)成的集合為{7,9,10,12,16}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=0.60.6,b=0.61.5,c=1.50.6,則a,b,c的大小關(guān)系( 。
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程$\widehat{y}$=$\widehat$x$+\widehat{a}$(其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(Ⅱ)預(yù)計產(chǎn)量為8千件時的成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:曲線C:(m+2)x2+my2=1表示雙曲線,命題q:方程y2=(m2-1)x表示的曲線是焦點在x軸的負半軸上的拋物線,若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線x-ysinθ+1=0的傾斜角的取值范圍是( 。
A.$[{\frac{π}{4},\frac{3π}{4}}]$B.$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$C.$[{0,\frac{π}{4}}]$D.$[{\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(Ⅰ)已知復(fù)數(shù)$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,其共軛復(fù)數(shù)為$\overline z$,求$|\frac{1}{z}|+{(\overline z)^2}$;
(Ⅱ)設(shè)集合A={y|$y={x^2}-2x+\frac{1}{2}$},B={x|m+x2≤1,m<1}.命題p:x∈A;命題q:x∈B.若p是q的必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案