【題目】已知二次函數(shù)的圖像經(jīng)過坐標原點,其到函數(shù)為,數(shù)列的前項和為,點均在函數(shù)的圖像上.

(I)求數(shù)列的通項公式;

)設(shè)是數(shù)列的前n項和,求使得對所有都成立的最小正整數(shù)m.

【答案】(I);(II).

【解析】

試題分析:(I)設(shè)二次函數(shù),根據(jù)導(dǎo)函數(shù)的表達式,再根據(jù)點均在函數(shù)的圖象上,求出的遞推公式;(II)把(I)中的遞推關(guān)系式代入,根據(jù)裂項相消求得,最后解得使對所有都成立的最小正整數(shù).

試題解析:()設(shè)這二次函數(shù),則,

由于,所以,所以,

又因為點均在函數(shù)的圖像上,所以

時,,

時,,也適合.

所以,.

)由()得

隨著的增大,逐漸增大直至趨近,故對所有都成立,只要即可,即只要.

故使得對所有都成立的最小正整數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A{x|(x3)(xa)<0,a∈R},集合B{xZ|x23x4<0}

(1)AB的子集個數(shù)為4,求a的范圍;

(2)aZ,當AB時,求a的最小值,并求當a取最小值時AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:

年份

2011

2012

2013

2014

2015

儲蓄存款(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,,得到下表2:

時間代號

1

2

3

4

5

0

1

2

3

5

)求關(guān)于的線性回歸方程;

)通過()中的方程,求出關(guān)于的回歸方程;

)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)B=,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足:對任意、恒成立,當時,.

1求證上是單調(diào)遞增函數(shù);

2已知,解關(guān)于的不等式;

3,且不等式對任意恒成立.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱垂直底面,,,是棱的中點

(Ⅰ)證明:平面平面

(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積比

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線互相平行,求的值;

(2)求的單調(diào)區(qū)間;

(3)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集

(1)若,求實數(shù)q的取值范圍;

(2)若中有四個元素,求q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】化為推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:

女性用戶:

分值區(qū)間

頻數(shù)

20

40

80

50

10

男性用戶:

分值區(qū)間

頻數(shù)

45

75

90

60

30

(1)如果評分不低于70分,就表示該用戶對手機認可,否則就表示不認可,完成下列列聯(lián)表,并回答是否有的把握認為性別對手機的認可有關(guān):

女性用戶

男性用戶

合計

認可手機

不認可手機

合計

附:

0.05

0.01

3.841

6.635

(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取2名用戶,求2名用戶中評分小于90分的概率.

查看答案和解析>>

同步練習冊答案