【題目】已知函數(shù),,函數(shù)的圖象在點處的切線平行于軸.
(Ⅰ)求的值
(Ⅱ)設(shè),若的所有零點中,僅有兩個大于,設(shè)為,()
(1)求證:,.
(2)過點,的直線的斜率為,證明:.
【答案】(Ⅰ)2(Ⅱ)(1)證明見解析(2)證明見解析
【解析】
(Ⅰ)求得,根據(jù)題設(shè)條件,得到,即可求解;
(Ⅱ)(1)由(Ⅰ)可得,求得,,利用零點存在性定理,即可得到結(jié)論;(2)由斜率公式,整理得到,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.
(Ⅰ)由題意,函數(shù),可得,
又由函數(shù)的圖象在點處的切線平行于軸,
所以,解得.
(Ⅱ)(1)由(Ⅰ)可得,
可得,,,
所以,,
由零點存在性定理,可得,.
(2)由斜率公式,可得,
因為,所以,所以,
所以,
設(shè),則,
當(dāng)時,,當(dāng)時,當(dāng),
在上遞增,在上遞減,
又,所以,所以,
又由,解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運動”已經(jīng)成為當(dāng)下最熱門的健身方式,小李的微信朋友圈內(nèi)也有大量的好友參加了“微信運動”.他隨機的選取了其中30人,記錄了他們某一天走路的步數(shù),將數(shù)據(jù)整理如下:
步數(shù) | |||
人數(shù) | 5 | 13 | 12 |
(1)若采用樣本估計總體的方式,試估計小李所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)若超過8000步則他被系統(tǒng)評定為“積極型”,否則評定為“懈怠型”,將這30人按照“積極型”、“懈怠型”分成兩層,進行分層抽樣,從中抽取5人,將這5人中屬于“積極型”的人依次記為,屬于“懈怠型”的人依次記為,現(xiàn)再從這5人中隨機抽取2人接受問卷調(diào)查.設(shè)為事件“抽取的2人來自不同的類型”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某地區(qū)隨機抽測120名成年女子的血清總蛋白含量(單位:),由測量結(jié)果得如圖頻數(shù)分布表:
(1)①仔細(xì)觀察表中數(shù)據(jù),算出該樣本平均數(shù)______;
②由表格可以認(rèn)為,該地區(qū)成年女子的血清總蛋白含量Z服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本標(biāo)準(zhǔn)差s.經(jīng)計算,該樣本標(biāo)準(zhǔn)差.
醫(yī)學(xué)上,Z過高或過低都為異常,Z的正常值范圍通常取關(guān)于對稱的區(qū)間,且Z位于該區(qū)間的概率為,試用該樣本估計該地區(qū)血清總蛋白正常值范圍.
120名成年女人的血清總蛋白含量的頻數(shù)分布表 | |||
分組 | 頻數(shù)f | 區(qū)間中點值x | |
2 | 65 | 130 | |
8 | 67 | 536 | |
12 | 69 | 828 | |
15 | 71 | 1065 | |
25 | 73 | 1825 | |
24 | 75 | 1800 | |
16 | 77 | 1232 | |
10 | 79 | 790 | |
7 | 81 | 567 | |
1 | 83 | 83 | |
合計 | 120 | 8856 |
(2)結(jié)合(1)中的正常值范圍,若該地區(qū)有5名成年女子檢測血清總蛋白含量,測得數(shù)據(jù)分別為83.2,80,73,59.5,77,從中隨機抽取2名女子,設(shè)血清總蛋白含量不在正常值范圍的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與圓: 相切,且與圓: 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個不在軸上的動點, 為坐標(biāo)原點,過點作的平行線交曲線于, 兩個不同的點.
(Ⅰ)求曲線的方程;
(Ⅱ)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(Ⅲ)記的面積為, 的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.直線過點,且與橢圓 交于,兩點,線段的中點為.
(I)求橢圓的方程;
(Ⅱ)點為坐標(biāo)原點,延長線段與橢圓交于點,四邊形能否為平行四邊形?若能,求出此時直線的方程,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“四”“校”“聯(lián)”“考”四個字,有放回地從中任取一個小球,取到“聯(lián)”就停止,用隨機模擬的方法估計直到第二次停止的概率:先由計算器產(chǎn)生1到4之間取整數(shù)值的隨機數(shù),且用1,2,3,4表示取出小球上分別寫有“四”“校”“聯(lián)”“考”四個字,以每兩個隨機數(shù)為一組,代表兩次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 23 34據(jù)此估計,直到第二次就停止的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,設(shè)函數(shù),若存在區(qū)間,使得函數(shù)在上的值域為,求實數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com