如圖,四邊形ABCD為菱形,ACFE為平行四邊形,且面ACFE⊥面ABCD,AB=BD=2,AE=
3
,設(shè)BD與AC相交于點(diǎn)G,H為FG的中點(diǎn).
(Ⅰ)證明:CH⊥面BFD;
(Ⅱ)若CH=
3
2
,求EF與面EDB所成角的大。
考點(diǎn):直線與平面所成的角,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)首先根據(jù)已知條件利用菱形的性質(zhì)求出垂直的關(guān)系,進(jìn)一步利用面面垂直得到線線垂直,最后利用線面垂直的判定求出結(jié)論.
(Ⅱ)利用上步的結(jié)論,先確定線面的夾角,進(jìn)一步求出角的大小.
解答: (Ⅰ)證明:四邊形ABCD為菱形
所以:BD⊥AC
又面ACEF⊥面ABCD
所以:BD⊥平面ACFE
所以:BD⊥CH
即:CH⊥BD
又H為FG的中點(diǎn),CG=CF=
3

所以:CH⊥FG
所以:CH⊥面BFD.
(Ⅱ)連接EG,由(Ⅰ)知BD⊥平面ACFE
所以:面EFG⊥面BED
所以:EF與平面EDB所成的角即為∠FEG.
在△FCG中,CG=CF=
3
,CH=
3
2
,CH⊥GF
所以∠GCF=120°,GF=3
所以EG=
3
,又因?yàn)镋F=2
3

所以在△EFG中,可求得∠FEG=60°
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):線面垂直的判定,線面的夾角的應(yīng)用.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn)O,焦點(diǎn)與橢圓
x2
25
+
y2
9
=1的右焦點(diǎn)重合.
(1)求拋物線C的方程;
(2)在拋物線C的對(duì)稱軸上是否存在定點(diǎn)M,使過點(diǎn)M的動(dòng)直線與拋物線C相交于P,Q兩點(diǎn)時(shí),都有∠POQ=
π
2
.若存在,求出M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,三棱錐S-ABC中,SA⊥AC,AC⊥BC,M為SB的中點(diǎn),D為AB的中點(diǎn),且△AMB為正三角形.
(1)求證:DM∥平面SAC;
(2)求證:平面SBC⊥平面SAC;
(3)若BC=4,SB=20,求三棱錐D-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga(1+ax)-loga(1-ax),其中a>0,且a≠1.
(1)當(dāng)a=2時(shí),解不等式f(x)-1>0;
(2)當(dāng)a>1時(shí),若關(guān)于x的不等式f(x)-1>0恒成立,求a的取值范圍;
(3)若f(x0)=x0-1,證明|x0|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A(x1,y1),B(x2,y2).
(1)求a的取值范圍;
(2)設(shè)x1=
5
12
x2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

規(guī)定一種運(yùn)算“*“:對(duì)于任意實(shí)數(shù)x,y恒有x*x=0,x*(y*z)=(x*y)+z(“+”表示加號(hào)),則2013*2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=4,點(diǎn)P為面ADD1A1的對(duì)角線AD1上的動(dòng)點(diǎn)(不包括端點(diǎn)).PM⊥平面ABCD交AD于點(diǎn)M,MN⊥BD于點(diǎn)N.
(1)設(shè)AP=x,將PN長表示為x的函數(shù);
(2)當(dāng)PN最小時(shí),求異面直線PN與A1C1所成角的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,M,N分別為 BC,CD的中點(diǎn),O為BD的中點(diǎn),且AB=BC=CD=DA,求證:MN⊥平面AOC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)為F1、F2,且過點(diǎn)P(3,4),若PF1⊥PF2,則橢圓方程為
 

查看答案和解析>>

同步練習(xí)冊答案