【題目】已知函數(shù)
討論函數(shù)的單調(diào)性;
當(dāng)時(shí),求函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】
(1)先對(duì)函數(shù)求導(dǎo),分別討論,,即可得出結(jié)果;
(2)先由(1)得時(shí),函數(shù)的最大值,分別討論,,,即可結(jié)合題中條件求出結(jié)果.
解:(1) , ,
當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí),;當(dāng)時(shí),
當(dāng)時(shí),在上單調(diào)遞減;
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.
(2)由(1)得,
當(dāng),即時(shí),函數(shù)在內(nèi)有無(wú)零點(diǎn);
當(dāng),即時(shí),函數(shù)在內(nèi)有唯一零點(diǎn),
又,所以函數(shù)在內(nèi)有一個(gè)零點(diǎn);
當(dāng),即時(shí),由于,,
,
若,即時(shí),,由函數(shù)單調(diào)性知
使得,使得,
故此時(shí)函數(shù)在內(nèi)有兩個(gè)零點(diǎn);
若,即時(shí),,
且,,
由函數(shù)的單調(diào)性可知在內(nèi)有唯一的零點(diǎn),在內(nèi)沒(méi)有零點(diǎn),從而在內(nèi)只有一個(gè)零點(diǎn)
綜上所述,當(dāng)時(shí),函數(shù)在內(nèi)有無(wú)零點(diǎn);
當(dāng)時(shí),函數(shù)在內(nèi)有一個(gè)零點(diǎn);
當(dāng)時(shí),函數(shù)在內(nèi)有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針?lè)较?3圈,當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)開(kāi)始計(jì)時(shí),即從圖中點(diǎn)開(kāi)始計(jì)算時(shí)間.
(1)當(dāng)秒時(shí)點(diǎn)離水面的高度_________;
(2)將點(diǎn)距離水面的高度(單位: )表示為時(shí)間(單位: )的函數(shù),則此函數(shù)表達(dá)式為_______________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)通過(guò)調(diào)查問(wèn)卷(滿(mǎn)分50分)的形式對(duì)本企業(yè)900名員工的工作滿(mǎn)意度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(其中16名女員工,14名男員工)的得分,如下表:
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(Ⅰ)現(xiàn)求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為“滿(mǎn)意”,否則為“不滿(mǎn)意”,請(qǐng)完成下列表格:
“滿(mǎn)意”的人數(shù) | “不滿(mǎn)意”的人數(shù) | 合計(jì) | |
女 | 16 | ||
男 | 14 | ||
合計(jì) | 30 |
(Ⅱ)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿(mǎn)意”有關(guān)?
參考數(shù)據(jù):
0.10 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),已知,
(1)若函數(shù),求的值;
(2)當(dāng)時(shí),求證:函數(shù)在上是單調(diào)遞增函數(shù);
(3)若對(duì)于一切,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,其左頂點(diǎn)在圓上.
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上不同于點(diǎn) 的點(diǎn),直線(xiàn)與圓的另一個(gè)交點(diǎn)為.是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形和梯形所在的平面互相垂直,,,.
(1)若為的中點(diǎn),求證:平面;
(2)若,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,已知直線(xiàn)的參數(shù)方程為(為參數(shù),),曲線(xiàn)的極坐標(biāo)方程為.
(1)若,求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),當(dāng)變化時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修44:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,傾斜角為的直線(xiàn)的參數(shù)方程為(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)
方程是.
(1)寫(xiě)出直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線(xiàn)經(jīng)過(guò)點(diǎn)且與曲線(xiàn)相交于兩點(diǎn),求兩點(diǎn)間的距離的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com