17.已知α∈(0,$\frac{π}{2}$),cosα=$\frac{3}{5}$.
(1)求sin($\frac{π}{6}$+α)的值;
(2)求cos($\frac{π}{3}$+2α)的值.

分析 (1)由題意和同角三角函數(shù)基本關系可得sinα,代入sin($\frac{π}{6}$+α)=$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα,計算可得;
(2)由(1)和二倍角公式可得sin2α和cos2α,代入cos($\frac{π}{3}$+2α)=$\frac{1}{2}$cos2α-$\frac{\sqrt{3}}{2}$sin2α,計算可得.

解答 解:(1)∵α∈(0,$\frac{π}{2}$),cosα=$\frac{3}{5}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,
∴sin($\frac{π}{6}$+α)=$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα
=$\frac{1}{2}$×$\frac{3}{5}$+$\frac{\sqrt{3}}{2}$×$\frac{4}{5}$=$\frac{3+4\sqrt{3}}{10}$;
(2)由(1)可得sin2α=2sinαcosα=$\frac{24}{25}$,
cos2α=cos2α-sin2α=-$\frac{7}{25}$,
∴cos($\frac{π}{3}$+2α)=$\frac{1}{2}$cos2α-$\frac{\sqrt{3}}{2}$sin2α
=$\frac{1}{2}$×(-$\frac{7}{25}$)-$\frac{\sqrt{3}}{2}$×$\frac{24}{25}$=-$\frac{7+24\sqrt{3}}{50}$

點評 本題考查和差角的三角函數(shù)公式,涉及二倍角公式和同角三角函數(shù)基本關系,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.求與圓x2+(y-2)2=1相切,且在兩坐標軸上截距相等的直線方程$\sqrt{3}$x±y=0或x+y-(2±$\sqrt{2}$)=0..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知角α的終邊上的點P與A(a,b)關于x軸對稱(a≠0,b≠0),角β的終邊上的點Q與A關于直線y=x對稱,求$\frac{sin(π+α)}{sin(\frac{3π}{2}+β)}$-$\frac{sin(π-α)cos(-β)+1}{sin(\frac{7π}{2}+α)sinβ}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且$\overrightarrow{a}$與$\overrightarrow$不共線,則|$\overrightarrow{a}$-$\overrightarrow$|的范圍是(1,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結果.
(1)一個袋中裝有2個白球和5個黑球,從中任取3個,其中所含白球的個數(shù)為:
(2)一個袋中裝有5個同樣大小的球,編號為1,2,3,4,5.現(xiàn)從該袋內(nèi)隨機取出3個球,被取出的球的最大號碼數(shù)為ξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在等差數(shù)列{an}中,a2=3,a5=12,則a8=21.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinωx(ω>0)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的周期T;
(2)求函數(shù)y=f(x)的解析式,并補充函數(shù)在區(qū)間[$\frac{π}{2}$,π]的圖象;
(3)判斷函數(shù)y=f(x)在區(qū)間[$\frac{3π}{4}$,π]上是增函數(shù)還是減函數(shù),并指出函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.與雙曲線$\frac{y^2}{4}-\frac{x^2}{3}=1$共同的漸近線,且過點(-3,2)的雙曲線的標準方程是( 。
A.$\frac{y^2}{8}-\frac{x^2}{6}=1$B.$\frac{x^2}{6}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{y^2}{9}-\frac{x^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.過雙曲線${x}^{2}-\frac{{y}^{2}}{4}=1$的右焦點F作直線l交雙曲線于A?B兩點,若|AB|=4,則這樣的直線有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

同步練習冊答案