已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的
 ,函數(shù)在區(qū)間 上總不是單調(diào)函數(shù),
求實數(shù)的取值范圍;
(3)求證 
(1)a>0,
當(dāng)a=0無單調(diào)區(qū)間,當(dāng)a<0,
(2)
(3)構(gòu)造函數(shù)借助于不等式來得到證明。

試題分析:.解:1)根據(jù)題意,由于,在可知導(dǎo)數(shù)為,因為定義域為x>0,那么對于參數(shù)a討論可知:
,
當(dāng)時,
當(dāng)時,
當(dāng)時,
2)



,

 

,可證

3)令

因為。。。。①
。。。。。②
又①式中“=”僅在n=1時成立,又,所以②“=”不成立
證畢。
點評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,以及導(dǎo)數(shù)單調(diào)性和不等式的綜合運用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
(Ⅲ)求證:,e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù) 
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時,求函數(shù)上的最小值和最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知對任意實數(shù),有,且,則時(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)當(dāng)k=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k∈(1/2,1]時,求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)若函數(shù)圖像上的點到直線距離的最小值為,求的值;
(2)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(3)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)
“分界線”.設(shè),試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)定函數(shù) (>0),且方程的兩個根分別為1,4。
(Ⅰ)當(dāng)=3且曲線過原點時,求的解析式;
(Ⅱ)若無極值點,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),函數(shù)的導(dǎo)函數(shù)是,且是奇函數(shù),則的值為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案