分析 (Ⅰ)由橢圓E經(jīng)過點$A(\sqrt{3},0)$和點B(0,2),列出方程組,求出a=2,b=$\sqrt{3}$,由此能求出橢圓的標(biāo)準方程.
(Ⅱ)取立$\left\{{\begin{array}{l}{\frac{y^2}{4}+\frac{x^2}{3}=1}\\{y=k(x-2)}\end{array}}\right.$,得(3k2+4)y2+16ky+4k2=0,由此利用韋達定理、根的判別式,結(jié)合已知條件能求出實數(shù)k的值.
解答 解:(Ⅰ)∵橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點$A(\sqrt{3},0)$和點B(0,2),
∴$\left\{\begin{array}{l}{\frac{3}{^{2}}=1}\\{\frac{4}{{a}^{2}}=1}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,
橢圓的標(biāo)準方程為$\frac{y^2}{4}+\frac{x^2}{3}=1$.
(Ⅱ)設(shè)點M(x1,y1),N(x2,y2),
取立$\left\{{\begin{array}{l}{\frac{y^2}{4}+\frac{x^2}{3}=1}\\{y=k(x-2)}\end{array}}\right.$,得(3k2+4)y2+16ky+4k2=0,
∴$\left\{{\begin{array}{l}{{y_1}+{y_2}=\frac{-16k}{{3{k^2}+4}}}\\{{y_1}{y_2}=\frac{{4{k^2}}}{{3{k^2}+4}}}\end{array}}\right.$,且△=256k2-16k2(3k2+4)>0,
解得0<k2<4,
$\frac{{{S_{△AOM}}}}{{{S_{△AON}}}}=\frac{y_1}{y_2}$,
∴y1=7y2$⇒\left\{{\begin{array}{l}{{y_1}+{y_2}=8{y_2}}\\{{y_1}{y_2}=7y_2^2}\end{array}}\right.$,
∴$\left\{{\begin{array}{l}{\frac{{-16{k^{\;}}}}{{3{k^2}+4}}=8{y_2}}\\{\frac{{4{k^2}}}{{3{k^2}+4}}=7y_2^2}\end{array}}\right.$$⇒\frac{64}{{3{k^2}+4}}=\frac{64}{7}$,
解得實數(shù)k的值為±1.
點評 本題考查橢圓方程求法,考查滿足條件的實數(shù)值的求法,考查橢圓、韋達定理、根的判別式、直線方程、弦長公式等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | π | C. | 4π | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
分組 | 頻數(shù) | 頻率 |
[10,15) | 12 | 0,10 |
[15,20) | 30 | a |
[20,25) | m | 0.40 |
[25,30) | n | 0.25 |
合計 | 120 | 1.00 |
A. | 2,5,8,5 | B. | 2,5,9,4 | C. | 4,10,4,2 | D. | 4,10,3,3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12種 | B. | 15種 | C. | 18種 | D. | 20種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\overrightarrow{PM}$ | B. | 3$\overrightarrow{PM}$ | C. | 2$\overrightarrow{PM}$ | D. | $\overrightarrow{PM}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com