(文科)設(shè)函數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極大值和極小值;
(2)若當(dāng)x∈[a+1,a+2]時(shí),不等式|f'(x)|≤a恒成立,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)求導(dǎo)函數(shù),根據(jù)0<a<1,利用導(dǎo)數(shù)的正負(fù)可得函數(shù)的單調(diào)區(qū)間,由此可得函數(shù)f(x)的極值;
(2)求導(dǎo)函數(shù),確定函數(shù)f′(x)在[a+1,a+2]上單調(diào)遞減,求出函數(shù)的最值,將不等式|f'(x)|≤a恒成立,轉(zhuǎn)化為不等式組,即可求得實(shí)數(shù)a的取值范圍.
解答:解:(1)求導(dǎo)函數(shù)可得f′(x)=-(x-3a)(x-a)
∵0<a<1,∴由f′(x)>0可得a<x<3a;由f′(x)>0可得x<a或x>3a
∴f(x)的單調(diào)遞增區(qū)間為(a,3a),單調(diào)遞減區(qū)間為(-∞,a)和(3a,+∞)
∴函數(shù)f(x)的極大值為f(3a)=b,極小值為f(a)=-
(2)求導(dǎo)函數(shù)可得f′(x)=-(x-2a)2+a2,
∵0<a<1,∴a+1>2a
∴函數(shù)f′(x)在[a+1,a+2]上單調(diào)遞減
∴f′(x)max=f′(a+1)=2a-1,f′(x)min=f′(a+2)=4a-4
∵不等式|f'(x)|≤a恒成立,


∵0<a<1
∴實(shí)數(shù)a的取值范圍是
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查不等式恒成立問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科)設(shè)函數(shù)f(x)的定義域?yàn)閧x|x>0},值域?yàn)镽,且同時(shí)滿足下列條件:
(1)對(duì)于任意正數(shù)x1,x2,都有f(x1x2)=f(x1)+f(x2);
(2)對(duì)于任意正數(shù)x1,x2,且x1≠x2,都有
f(x1)-f(x2x1-x2
>0

寫出符合上述條件的一個(gè)函數(shù)f(x)
:y=log2x
:y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人參加浙江衛(wèi)視的“我愛記歌詞”節(jié)目,三人獨(dú)立闖關(guān),互不影響.其中甲過關(guān)而乙不過關(guān)的概率是
1
4
,乙過關(guān)而丙不過關(guān)的概率是
1
12
,甲、丙均過關(guān)的概率為
2
9
.記ξ為節(jié)目完畢后過關(guān)人數(shù)和未過關(guān)人數(shù)之差的絕對(duì)值.
(1)求甲、乙、丙三人各自過關(guān)的概率;
(2)理科:求ξ的分布列和數(shù)學(xué)期望;
     文科:求ξ取最小值時(shí)的概率;
(3)理科:設(shè)“函數(shù)f(x)=log2x2-(ξ-1)x+
1
4
]
的值域是R”為事件D,試求事件D的概率.
     文科:設(shè)“不等式x2-ξx+1<0對(duì)一切x∈[1,2]均成立”為事件D,試求事件D的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•甘肅一模)(文科)設(shè)函數(shù)f(x)=-
13
x3+2ax2-3a2x+b(0<a<1)

(1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極大值和極小值;
(2)若當(dāng)x∈[a+1,a+2]時(shí),不等式|f'(x)|≤a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科)設(shè)函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極大值和極小值;
(2)若當(dāng)x∈[a+1,a+2]時(shí),不等式|f'(x)|≤a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案