數(shù)列{an}滿足a1=1,an+1
1
a2n
+4
=1
(n∈N*),記Sn=a12+a22+…+an2,若S2n+1-Sn
m
30
對n∈N*恒成立,則正整數(shù)m的最小值為( 。
A.10B.9C.8D.7
∵an+!2
1
an2
+4)=1,∴
1
an+12
=
1
an2
+4

1
an+12
-
1
an2
=4
(n∈N*),
∴{
1
an2
}是首項為1,公差為4的等差數(shù)列,
1
an2
=1+4(n-1)=4n-3,∴an2=
1
4n-3

∵(S2n+1-Sn)-(S2n+3-Sn+1
=(an+12+an+22+…+a2n+12)-(an+22+an+32+…+a2n+32
=an+12-a2n+22-a2n+32
=
1
4n-1
-
1
8n+5
-
1
8n+9

=(
1
8n+2
-
1
8n+5
)+(
1
8n+2
-
1
8n+9
)
>0,
∴數(shù)列{S2n+1-Sn}(n∈N*)是遞減數(shù)列,
數(shù)列{S2n+1-Sn}(n∈N*)的最大項為
S3-S1=a22+a32=
1
5
+
1
9
=
14
45
,
14
45
m
30
,∴m≥
28
3
又∵m是正整數(shù),
∴m的最小值為10.
故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設b>0,數(shù)列{an}滿足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求數(shù)列{an}的通項公式;
(4)證明:對于一切正整數(shù)n,2an≤bn+1+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足a1=1,a2=2,an=
an-1an-2
(n≥3)
,則a17等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,數(shù)列{an}滿足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知數(shù)列{an}極限存在且大于零,求A=
lim
n→∞
an
(將A用a表示);
(II)設bn=an-A,n=1,2,…,證明:bn+1=-
bn
A(bn+A)
;
(III)若|bn|≤
1
2n
對n=1,2,…
都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求證{bn}為等比數(shù)列;    
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=
4
3
,an+1=an2-an+1(n∈N*),則m=
1
a1
+
1
a2
+…+
1
a2013
的整數(shù)部分是( 。

查看答案和解析>>

同步練習冊答案