設(shè)函數(shù)f(x)=sin(ωx+
π
3
)+a(其中ω>0,a∈R)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)是
π
6

(1)求ω的值;
(2)如果f(x)在區(qū)間[-
π
3
,
6
]上的最小值為2,求α的值.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由題意根據(jù)五點(diǎn)法作圖求得ω的值.
(2)由函數(shù)的解析式以及條件,利用正弦函數(shù)的定義域和值域,求得a的值.
解答: 解:(1)由題意根據(jù)五點(diǎn)法作圖可得ω•
π
6
+
π
3
=
π
2
,求得ω=1.
(2)由(1)可得函數(shù)f(x)=sin(x+
π
3
)+a,在區(qū)間[-
π
3
,
6
]上,x+
π
3
∈[0,
6
],
故當(dāng)x+
π
3
=
6
時(shí),函數(shù)f(x)取得最小值為-
1
2
+a=2,故a=
5
2
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P(x,y)是圓C:(x-1)2+(y-1)2=1上的點(diǎn),則
y+1
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=10|x+1|-1的單調(diào)減區(qū)間為( 。
A、(-∞,-1)
B、(-∞,1)
C、(-1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an},是一個(gè)公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16
(1)求數(shù)列{an}的通項(xiàng)公式
(2)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>30n+400?若存在,求n的最小值;若不存在,說(shuō)明理由.
(3)若數(shù)列{an}和數(shù)列{bn}滿足等式an=
b1
2
+
b2
22
+
b3
23
+…+
bn
2n
(n為正整數(shù)),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,AC和BD交于點(diǎn)E,PA=3,AD=2,AB=2
3
,BC=6.
(1)若在PC取一點(diǎn)F,滿足
PF
FC
=
1
3
,求證:EF∥平面PAB;
(2)求證:BD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
1-2sin10°cos10°
cos350°-
1-cos2170°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[-
2
3
π,
2
3
π]上單調(diào)遞減,則ω的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:lg4+lg25-log28×log2
1
8
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了調(diào)查學(xué)生攜帶手機(jī)的情況,學(xué)校對(duì)高一、高二、高三三個(gè)年級(jí)的學(xué)生進(jìn)行分層抽樣調(diào)查,已知高一有學(xué)生1200人、高二有1100人;三個(gè)年級(jí)總共抽取了65人,其中高一抽取了20人,則高三年級(jí)的全部學(xué)生數(shù)為( 。
A、1500B、1200
C、1600D、1300

查看答案和解析>>

同步練習(xí)冊(cè)答案