8.在一幢10m高的房屋頂測得對面一塔頂?shù)难鼋菫?0°,塔基的俯角為30°,假定房屋與塔建在同一水平地面上,則塔的高度為40m.

分析 作出圖示,利用30°角的性質(zhì)和勾股定理依次求出BC,CE,AC,AE,則AB=AE+BE.

解答 解如圖所示,過房屋頂C作塔AB的垂線CE,垂足為E,則CD=10,∠ACE=60°,∠BCE=30°,
∴BE=CD=10,BC=2CD=20,EC=BD=$\sqrt{B{C}^{2}-C{D}^{2}}=10\sqrt{3}$.
∵∠ACE=60°,∠AEC=90°,
∴AC=2CE=20$\sqrt{3}$,
∴AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=30.
∴AB=AE+BE=30+10=40.
故答案為:40.

點評 本題考查了解三角形的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知等比數(shù)列{an}中,各項都是正數(shù),且a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{6}+{a}_{7}}{{a}_{8}+{a}_{9}}$等于( 。
A.1+$\sqrt{2}$B.1-$\sqrt{2}$C.3+2$\sqrt{2}$D.3-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如果($\sqrt{x}-\frac{1}{{x}^{2}}$)n的展開式中含有常數(shù)項,則正整數(shù)n的最小值是5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合M={0,1,2},N={x|x=-a,a∈M},則集合M∪N=( 。
A.{-2,-1,0,1,0,2}B.{0}C.{-2,-1,1,2}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.方程${log_2}x=-\frac{1}{2}$的解為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列命題:
①“若a≤b,則a<b”的否命題;
②“若a=1,則ax2-x+3≥0的解集為R”的逆否命題;
③“周長相同的圓面積相等”的逆命題;
④“若$\sqrt{2}x$為有理數(shù),則x為無理數(shù)”的逆否命題.
其中真命題序號為( 。
A.②④B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,asinAsinB+bcos2A=$\sqrt{2}$a,且c2=b2+$\sqrt{3}{a^2}$,則sinB=$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.復數(shù)Z=$\frac{3-i}{i-1}$在復平面上所對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的圖象如圖所示,則ω=2,φ=$\frac{π}{6}$.

查看答案和解析>>

同步練習冊答案