【題目】甲、乙兩人做定點投籃游戲,已知甲每次投籃命中的概率均為甲投籃3次均未命中的概率為,乙每次投籃命中的概率均為,乙投籃2次恰好命中1次的概率為,、乙每次投籃是否命中相互之間沒有影響.

(1)若乙投籃3次,求至少命中2次的概率;

(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,的分布列和數(shù)學(xué)期望.

【答案】(1);(2)見解析.

【解析】試題分析:(1)本題為獨立重復(fù)試驗,根據(jù)獨立重復(fù)試驗概率公式 列方程組解得,再根據(jù)獨立重復(fù)試驗概率公式求至少命中2次的概率;(2)先確定隨機變量可能取法:0,12,3,4,再根據(jù)獨立重復(fù)試驗概率公式求對應(yīng)概率,列表得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.

試題解析:(1)由題意, 解得,

設(shè)“乙投籃3次,至少2次命中”為事件

(2)由題意的取值為0,1,2,3,4.

;

;

.

的分布列為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】太原五中是一所有著百年歷史的名校,圖1是某一階段來我校參觀學(xué)習(xí)的外校人數(shù)統(tǒng)計莖葉圖,第1次到第14次參觀學(xué)習(xí)人數(shù)依次記為A1 , A2 , …,A14 , 圖2是統(tǒng)計莖葉圖中人數(shù)在一定范圍內(nèi)的一個算法流程圖,那么算法流程圖輸出的結(jié)果是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)設(shè)函數(shù)是否存在實數(shù),使得曲線軸有兩個交點若存在,求出的值若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中a>0且a≠1).

(1)求函數(shù)f(x)的奇偶性,并說明理由;

(2)若,當(dāng)x 時,不等式恒成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程sin(2x+ )+m=0在(0,π)內(nèi)有相異兩解α,β,則tan(α+β)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),孝感市黃陂路高中數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

2)以上列聯(lián)表中女生選做幾何題的頻率作為概率,從該校1500名女生中隨機選6名女生,記6名女生選做幾何題的人數(shù)為,的數(shù)學(xué)期望和方差.

附表

參考公式 ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在半徑為R的圓桌上擺放同樣大小的半徑為r的硬幣.要求硬幣不準(zhǔn)露出圓桌面邊緣,并且所擺硬幣彼此不能重疊.當(dāng)擺放n枚硬幣之后,圓桌上就不能再多擺放一枚這種硬幣了.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國. 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴(yán)重影響航道安全和水生動物生長. 某科研團隊在某水域放入一定量水葫蘆進(jìn)行研究,發(fā)現(xiàn)其蔓延速度越來越快,經(jīng)過個月其覆蓋面積為,經(jīng)過個月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經(jīng)過時間個月的關(guān)系有兩個函數(shù)模型可供選擇.

(參考數(shù)據(jù):

Ⅰ)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;

Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過幾個月該水域中水葫蘆面積是當(dāng)初投放的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

【答案】A

【解析】雙曲線的方程為,則漸近線方程為,漸近線方程為: ,反之當(dāng)漸近線方程為時,只需要滿足,等軸雙曲線即可.故選擇充分不必要條件.

故答案為:A.

型】單選題
結(jié)束】
10

【題目】如圖,為測量河對岸塔 的高,先在河岸上選一點 ,使 在塔底 的正東方向上,在點 處測得 點的仰角為 ,再由點 沿北偏東 方向走 到位置 ,測得 ,則塔 的高是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案