在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知
3
b
sinB
=
a
cosA

(I)求角A的大小;
(II)若b=1,△ABC的面積為
3
2
,求a的值.
分析:(I)由a,b,sinA及sinB,利用正弦定理列出關(guān)系式,把已知的等式變形后代入,整理后利用同角三角函數(shù)間的基本關(guān)系弦化切后,得到tanA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);
(II)利用三角形的面積公式表示出三角形ABC的面積,把b,sinA及已知的面積代入,求出c的值,再由b,c及cosA的值,利用余弦定理即可求出a的值.
解答:解:(I)在△ABC中,由正弦定理得:
b
sinB
=
a
sinA
,
3
b
sinB
=
a
cosA
,即
b
sinB
=
3
3
a
cosA

a
sinA
=
3
3
a
cosA
,即
sinA
cosA
=tanA=
3

又A為三角形的內(nèi)角,
則A=
π
3

(II)∵b=1,sinA=sin
π
3
=
3
2
,△ABC的面積為
3
2

∴S△ABC=
1
2
bcsinA=
3
4
c=
3
2
,解得:c=2,
又cosA=cos
π
3
=
1
2
,
∴由余弦定理得:a2=b2+c2-2bccosA=1+4-2=3,
則a=
3
點(diǎn)評(píng):此題考查了正弦、余弦定理,三角形的面積公式,同角三角函數(shù)間的基本關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過(guò)如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(1)求f(x)的周期和對(duì)稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案