已知函數(shù)的圖象在點(diǎn)處的切線與直線平行,若數(shù)列的前項(xiàng)和為,則的值為 ( ).
A. B. C. D.
D
【解析】
試題分析:∵f(x)=x2+2bx,∴f′(x)=2x+2b,
∵函數(shù)f(x)=x2+2bx的圖象在點(diǎn)A(0,f(0))處的切線L與直線x-y+3=0平行,
∴f′(0)=2b=1,解得b=,f(x)=x2+x,∴,
∴數(shù)列的前n項(xiàng)和為Sn=(1-)+(-)+…+()=1=.
=,故選D.
考點(diǎn):主要考查導(dǎo)數(shù)的幾何意義,“裂項(xiàng)相消法”求和。
點(diǎn)評:小綜合題,本題以函數(shù)的切線為載體,主要考查導(dǎo)數(shù)的幾何意義,兩直線平行時(shí)的條件的應(yīng)用,“裂項(xiàng)相消法”求和。難度不大。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的圖象在點(diǎn)處的切線斜率為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點(diǎn),使得曲線在該點(diǎn)附近的左、右的兩部分分別位于曲線在該點(diǎn)處切線的兩側(cè)?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷 (解析版) 題型:填空題
已知函數(shù)的圖象在點(diǎn)處的切線與直線平行,若數(shù)列的前項(xiàng)和為,則的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省高三教學(xué)質(zhì)量監(jiān)測理科數(shù)學(xué)卷 題型:填空題
已知函數(shù)的圖象在點(diǎn)處的切線方程是= 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)的圖象在點(diǎn)處的切線的斜率為3,數(shù)列
的前項(xiàng)和為,則的值為( )
A、 B、 C、 D、
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年福建省八縣(市高二下學(xué)期期末聯(lián)考(文科)數(shù)學(xué)卷 題型:解答題
(本題滿分14分)已知函數(shù)的圖象在點(diǎn)處的切線的斜率為,且在處取得極小值。
(1)求的解析式;
(2)已知函數(shù)定義域?yàn)閷?shí)數(shù)集,若存在區(qū)間,使得在的值域也是,稱區(qū)間為函數(shù)的“保值區(qū)間”.
①當(dāng)時(shí),請寫出函數(shù)的一個“保值區(qū)間”(不必證明);
②當(dāng)時(shí),問是否存在“保值區(qū)間”?若存在,寫出一個“保值區(qū)間”并給予證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com