14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 圖象上有且僅有四個不同的點關(guān)于直線y=e的對稱點在函數(shù)g(x)=kx+2e+1的圖象上,則實數(shù)k的取值范圍為( 。
A.(1,2)B.(-1,0)C.(-2,-1)D.(-6,-1)

分析 由題意可化為函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 圖象與y=-kx-1的圖象有且只有四個不同的交點,結(jié)合題意作圖求解即可.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 圖象上有且僅有四個不同的點關(guān)于直線y=e的對稱點在函數(shù)g(x)=kx+2e+1的圖象上,
而函數(shù)g(x)=kx+2e+1關(guān)于直線y=e的對稱圖象為y=-kx-1,
∴函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 圖象與y=-kx-1的圖象有且只有四個不同的交點,
作函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 圖象與y=-kx-1的圖象如下,
易知直線y=-kx-1恒過點A(0,-1),
設(shè)直線AC與y=xlnx相切于點C(x,xlnx),
y′=lnx+1,
故lnx+1=$\frac{xlnx+1}{x}$,
解得,x=1;
故kAC=1;
設(shè)直線AB與y=xlnx相切于點C(x,x2+4x),
y′=2x+4,
故2x+4=$\frac{{x}^{2}+4x+1}{x}$,
解得,x=-1;
故kAC=-2+4=2;
故1<-k<2,
故-2<k<-1;
故選:C.

點評 本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用,同時考查了學(xué)生的作圖能力及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,m>0,n>0,那么m+2n的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{an}滿足a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$(n≥2,n∈N*).
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)bn=(1-$\frac{1}{{2}^{n}}$)an,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.選擇適當(dāng)?shù)姆椒ń庀铝腥切危?br />(1)在△ABC中,b=4,c=13,S△ABC=10,求a;
(2)在△ABC中,a=2$\sqrt{3}$,b=6,A=30°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在平面四邊形ABCD中,若AB=1,BC=2,B=60°,C=45°,D=120°,則AD=$\frac{\sqrt{6}-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知空間向量$\overrightarrow{a}$=(0,1,-1),$\overrightarrow$=(1,2,3),$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow$,則空間向量$\overrightarrow{c}$的坐標(biāo)是(-1,1,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,若a=3,c=4,cosC=-$\frac{1}{4}$,則b=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)=$\left\{\begin{array}{l}{1,-1<x≤0}\\{-1,0<x≤1}\end{array}\right.$,則下列函數(shù)值為1的是( 。
A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,ABCD是直角梯形,AB∥CD,AB=2CD=2,CD=BC,E是AB的中點,DE⊥AB,F(xiàn)是AC與DE的交點.
(Ⅰ)求sin∠CAD的值;
(Ⅱ)求△ADF的面積.

查看答案和解析>>

同步練習(xí)冊答案