8.在△ABC中,B=45°,C=60°,c=2,則b=$\frac{2\sqrt{6}}{3}$.

分析 由已知利用正弦定理即可計(jì)算得解.

解答 解:∵B=45°,C=60°,c=2,
∴由正弦定理$\frac{sinB}=\frac{c}{sinC}$,可得:b=$\frac{c•sinB}{sinC}$=$\frac{2×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{6}}{3}$.
故答案為:$\frac{2\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}&{\;}\\{y≥-1}&{\;}\\{4x+y≤9}&{\;}\\{x+y≤3}&{\;}\end{array}\right.$,若目標(biāo)函數(shù)z=mx+y(m>0)的最大值為1,則m的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤2}\\{x≥0}\end{array}\right.$,則z=x+2y的最大值為(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=lnx+ln(2-x),則( 。
A.y=f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱B.f(x)在(0,2)單調(diào)遞減
C.y=f(x)的圖象關(guān)于直線x=1對(duì)稱D.f(x)在(0,2)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=cosx(sinx+$\sqrt{3}$cosx)-$\frac{\sqrt{3}}{2}$,x∈R.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在(x+a)5的展開式中,x3的系數(shù)為40,則a=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l1:3x+4y-3=0,直線l2:6x+8y-1=0(b∈R)平行,則它們之間的距離為( 。
A.2B.$\frac{1}{5}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線方程為y=±$\sqrt{3}$x,且過點(diǎn)$M({\sqrt{2},\sqrt{3}})$,其離心率為e,拋物線C2的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)為$({\frac{e}{2},0})$.
(I)求拋物線C2的方程;
(II)O為坐標(biāo)原點(diǎn),設(shè)A,B是拋物線上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}$=12.
(i)求證:直線AB必過定點(diǎn),并求出該定點(diǎn)P的坐標(biāo); (ii)過點(diǎn)P作AB的垂線與拋物線交于C,D兩點(diǎn),求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$\overrightarrow a,\overrightarrow b$都是非零向量,下列四個(gè)條件,使$\frac{\overrightarrow a}{|\overrightarrow a|}=\frac{\overrightarrow b}{|\overrightarrow b|}$成立的充要條件是( 。
A.$\overrightarrow a=\overrightarrow b$B.$\overrightarrow a=2\overrightarrow b$C.$\overrightarrow a∥\overrightarrow b$且$|\overrightarrow a|=|\overrightarrow b|$D.$\overrightarrow a∥\overrightarrow b$且方向相同

查看答案和解析>>

同步練習(xí)冊(cè)答案