已知:對?x>0,a≤x+
1
x
恒成立,則a的取值范圍為______.
?x>0,y=x+
1
x
≥2(當且僅當x=
1
x
時等號成立),
所以(x+
1
x
)
min=2;
而對?x>0,a≤x+
1
x
恒成立,
所以a≤2.
故答案為:a≤2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2-(1+a)x(x>0)
,其中a為實數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)≥0對定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(3)證明:對任意的正整數(shù)m,n,不等式
1
ln(m+1)
+
1
ln(m+2)
+…+
1
ln(m+n)
n
m(m+n)
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:對?x>0,a≤x+
1x
恒成立,則a的取值范圍為
a≤2
a≤2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg,0<a≤1,給定n∈N*,n≥2.

求證:f(2x)>2f(x)(x≠0)對任意n∈N*n≥2恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg,0<a≤1,給定n∈N*,n≥2.

求證:f(2x)>2f(x)(x≠0)對任意n∈N*n≥2恒成立.

查看答案和解析>>

同步練習冊答案