過點P(3,2)和點Q(4,7)的直線方程為________.

答案:
解析:

  答案:5x-y-13=0

  解析:將點P(3,2)和點Q(4,7)代入兩點式求得直線方程為,整理得5x-y-13=0.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(3,2),且與x軸和y軸的正半軸分別交于A、B兩點,求|PA|·|PB|的值為最小時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(3,2),且與x軸和y軸的正半軸分別交于A、B兩點,求|PA|·|PB|的值為最小時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

22.已知傾斜角為45°的直線l過點A(1,-2)和點B,B在第一象限,|AB|=3.

(1)求點B的坐標;

(2)若直線l與雙曲線C:y2=1(a>0)相交于E、F兩點,且線段EF的 中點坐標為(4,1),求a的值;

(3)對于平面上任一點P,當點Q在線段AB上運動時,稱|PQ|的最小值為與線段AB的距離.已知點Px軸上運動,寫出點P(t,0)到線段AB的 距離h關于t的函數(shù)關系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(3,2),且與x軸和y軸的正半軸分別交于A、B兩點.求|PA|·|PB|的值為最小時直線l的方程.

查看答案和解析>>

同步練習冊答案