精英家教網 > 高中數學 > 題目詳情

【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中點,△A1MC1是等腰三角形,D為CC1的中點,E為BC上一點.
(Ⅰ)若DE∥平面A1MC1 , 求 ;
(Ⅱ)求直線BG和平面A1MC1所成角的余弦值.

【答案】解:(Ⅰ)取BC中點N,連結MN,C1N, ∵M,N分別為AB,CB中點
∴MN∥AC∥A1C1
∴A1 , M,N,C1四點共面,
且平面BCC1B1∩平面A1MNC1=C1N,
又DE∩平面BCC1B1 ,
且DE∥平面A1MC1 , ∴DE∥C1N,
∵D為CC1的中點,∴E是CN的中點,
=
(Ⅱ)連結B1M,
因為三棱柱ABC﹣A1B1C1為直三棱柱,∴AA1⊥平面ABC,
∴AA1⊥AB,即四邊形ABB1A1為矩形,且AB=2AA1 ,
∵M是AB的中點,∴B1M⊥A1M,
又A1C1⊥平面ABB1A1 ,
∴A1C1⊥B1M,從而B1M⊥平面A1MC1
∴MC1是B1C1在平面A1MC1內的射影,
∴B1C1與平面A1MC1所成的角為∠B1C1M,
又B1C1∥BC,
∴直線BC和平面A1MC1所成的角即B1C1與平面A1MC1所成的角
設AB=2AA1=2,且三角形A1MC1是等腰三角形
∴A1M=A1C1= ,則MC1=2,B1C1=
∴cos∠B1C1M= ,∴直線BC和平面A1MC1所成的角的余弦值為

【解析】(Ⅰ)取BC中點N,連結MN,C1N,由已知得A1 , M,N,C1四點共面,由已知條件推導出DE∥C1N,從而求出 .(Ⅱ)連結B1M,由已知條件得四邊形ABB1A1為矩形,B1C1與平面A1MC1所成的角為∠B1C1M,由此能求出直線BC和平面A1MC1所成的角的余弦值.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(Ⅰ)作出函數f(x)的圖象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的部分圖象如圖所示,將函數f(x)的圖象向左平移m(m>0)個單位后,得到的圖象關于點( ,﹣1)對稱,則m的最小值是(
A.
B.
C. π
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四菱錐P﹣ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(I)求證:PA⊥AB;
(II)求直線AD與平面PCD所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,若 = ,則這個三角形必含有(
A.90°的內角
B.60°的內角
C.45°的內角
D.30°的內角

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)圖象如圖,f'(x)是f(x)的導函數,則下列數值排序正確的是(
A.0<f'(2)<f'(3)<f(3)﹣f(2)
B.0<f'(3)<f'(2)<f(3)﹣f(2)
C.0<f'(3)<f(3)﹣f(2)<f'(2)
D.0<f(3)﹣f(2)<f'(2)<f'(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某批發(fā)市場對某種商品的周銷售量(單位:噸)進行統(tǒng)計,最近100周的統(tǒng)計結果如下表所示:

周銷售量

2

3

4

頻數

20

50

30


(1)根據上面統(tǒng)計結果,求周銷售量分別為2噸,3噸和4噸的頻率;
(2)已知每噸該商品的銷售利潤為2千元,ξ表示該種商品兩周銷售利潤的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨立,求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P是橢圓C上任一點,點P到直線l1:x=﹣2的距離為d1 , 到點F(﹣1,0)的距離為d2 , 且 = .直線l與橢圓C交于不同兩點A、B(A,B都在x軸上方),且∠OFA+∠OFB=180°.
(1)求橢圓C的方程;
(2)當A為橢圓與y軸正半軸的交點時,求直線l方程;
(3)對于動直線l,是否存在一個定點,無論∠OFA如何變化,直線l總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線E:x2=4y的焦點F是橢圓 (a>b>0)的一個頂點.過點F且斜率為k(k≠0)的直線l交橢圓C于另一點D,交拋物線E于A、B兩點,線段DF的中點為M,直線OM交橢圓C于P、Q兩點,記直線OM的斜率為k',滿足
(1)求橢圓C的方程;
(2)記△PDF的面積為S1 , △QAB的面積為S2 , 設 ,求實數λ的最大值及取得最大值時直線l的方程.

查看答案和解析>>

同步練習冊答案