如圖所示圖形由單位正方形組成,請觀察圖1至圖4的規(guī)律,并依此規(guī)律,在橫線上畫出下一個圖形;
 
考點:歸納推理
專題:推理和證明
分析:由前四個圖形小正方形的排列規(guī)律,不難得出第五個圖形有五層,從上至下分別為1個、2個、3個、4個、5個小正方形.
解答: 解:在第一個圖形中,只有一層,一個小正方形;
在第二個圖形中,有兩層,從上至下分別為1個、2個小正方形;
在第三個圖形中,有三層,從上至下分別為1個、2個、3個小正方形;
由此歸納:
第n個圖形中,有n層,從上至下分別為1個、2個、3個…n個小正方形.
故n=5時,
有5層,從上至下分別為1個、2個、3個、4個、5個小正方形.
故答案為:
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若f(x)=sin(2x-
π
6
)-1,|f(x)-m|<1在x∈[-
π
4
,
π
6
]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
3
)+cos(2x-
π
6
).
(1)將函數(shù)f(x)解析式化為f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)的形式,并指出它的最小正周期.
(2)求此函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=3x與y=log3x的圖象( 。
A、關(guān)于原點對稱
B、關(guān)于x軸對稱
C、關(guān)于y軸對稱.
D、關(guān)于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結(jié)論錯誤的是( 。
A、a>b,c>d⇒a+c>b+d
B、當a>b,ab>0時,
1
a
1
b
C、當a,b∈R時,
a2+b2
2
≥ab
D、a>b,c>d⇒ac>bd

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x(2-x).
(1)求f(x)的解析式;
(2)畫f(x)的圖象并寫出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(k+1)x+lg|k+2|(k≠-1).
(1)若f(x)能表示為一個奇函數(shù)g(x)和一個偶函數(shù)h(x)之和,試求g(x)與h(x)的表達式;
(2)若f(x)和g(x)在區(qū)間[lg|k+2|,(k+1)2]上都是單調(diào)遞減函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個等差數(shù)列{an}和{bn}的前n和分別為An和Bn,且
An
Bn
=
7n+45
n+3
,則使得
an
bn
為整數(shù)的正整數(shù)n的個數(shù)是(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

M={x||x|≤2},N={x|a-1≤x≤a+1},若N是M的真子集,則a的取值范圍是( 。
A、(-1,1)
B、[-1,1]
C、(-1,1]
D、[-1,1)

查看答案和解析>>

同步練習冊答案