分析 (1)函數(shù)f($\frac{1}{x}$)=$\frac{\frac{1}{x}}{1+(\frac{1}{x})^{2}}$=$\frac{x}{{1+{x^2}}}$=f(x).故滿足①②.
(2)對任意的正實數(shù)x,f(x)=$\frac{x}{{1+{x^2}}}$=$(\frac{1+{x}^{2}}{x})^{-1}$=$(\frac{1}{x}+x)^{-1}$=g(x+$\frac{1}{x}}$),⇒g(x)=$\frac{1}{x}$,∵$x+\frac{1}{x}≥2$.
解答 解:(1)函數(shù)f(x)=$\frac{x}{{1+{x^2}}}$(x>0),滿足:①f(x)的定義域為(0,+∞);
又∵函數(shù)f($\frac{1}{x}$)=$\frac{\frac{1}{x}}{1+(\frac{1}{x})^{2}}$=$\frac{x}{{1+{x^2}}}$=f(x).故滿足②對任意的正實數(shù)x,都有f(x)=f(${\frac{1}{x}}$)成立.
∴f(x)屬于集合M.
(2)對任意的正實數(shù)x,f(x)=$\frac{x}{{1+{x^2}}}$=$(\frac{1+{x}^{2}}{x})^{-1}$=$(\frac{1}{x}+x)^{-1}$=g(x+$\frac{1}{x}}$),⇒g(x)=$\frac{1}{x}$,∵$x+\frac{1}{x}≥2$,
即存在定義域為[2,+∞)的函數(shù)g(x),使得對任意的正實數(shù)x,都有g(x+$\frac{1}{x}}$)=f(x)成立.
點評 本題考查了抽象函數(shù)的解析式及定義域,理解函數(shù)的三要素的含義是關鍵,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,0),(3,0) | B. | (0,-3),(0,3) | C. | (-$\sqrt{10}$,0),($\sqrt{10}$,0) | D. | (0,-$\sqrt{10}$),(0,$\sqrt{10}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{5}}}{2}}]$ | B. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{13}}}{3}}]$ | C. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{13}}}{3}}]$ | D. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{5}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com