【題目】函數(shù)f(x)= (x2﹣9)的單調(diào)遞增區(qū)間為( )
A.(0,+∞)
B.(﹣∞,0)
C.(3,+∞)
D.(﹣∞,﹣3)
【答案】D
【解析】解:由x2﹣9>0解得x>3或x<﹣3,即函數(shù)的定義域為{x|x>3或x<﹣3},
設(shè)t=x2﹣9,則函數(shù)y= t為減函數(shù),
根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系知要求函數(shù)f(x)的單調(diào)遞增區(qū)間,
即求函數(shù)t=x2﹣9的遞減區(qū)間,
∵t=x2﹣9,遞減區(qū)間為(﹣∞,﹣3),
則函數(shù)f(x)的遞增區(qū)間為(﹣∞,﹣3),
故選:D
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的單調(diào)性的相關(guān)知識,掌握注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種,以及對復(fù)合函數(shù)單調(diào)性的判斷方法的理解,了解復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其中a∈R,若對任意的非零的實數(shù)x1 , 存在唯一的非零的實數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,則k的最小值為( )
A.
B.5
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)判斷并證明函數(shù)f(x)的奇偶性
(2)判斷并證明當(dāng)x∈(﹣1,1)時函數(shù)f(x)的單調(diào)性;
(3)在(2)成立的條件下,解不等式f(2x﹣1)+f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=(m2﹣5m+7)x﹣m﹣1(m∈R)為偶函數(shù).
(1)求 的值;
(2)若f(2a+1)=f(a),求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】100名學(xué)生報名參加A、B兩個課外活動小組,報名參加A組的人數(shù)是全體學(xué)生人數(shù)的 ,報名參加B組的人數(shù)比報名參加A組的人數(shù)多3,兩組都沒報名的人數(shù)是同時報名參加A、B兩組人數(shù)的 多1,求同時報名參加A、B兩組人數(shù)( )
A.36
B.13
C.24
D.27
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形中, , , , , 和分別為與的中點,對于常數(shù),在梯形的四條邊上恰好有8個不同的點,使得成立,則實數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關(guān)系,下列說法中錯誤的是( )
A.第3分時汽車的速度是40千米/時
B.第12分時汽車的速度是0千米/時
C.從第3分到第6分,汽車行駛了120千米
D.從第9分到第12分,汽車的速度從60千米/時減少到0千米/時
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若,求的單調(diào)區(qū)間;(Ⅱ)若有最大值3,求的值;(Ⅲ)若的值域是,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com