【題目】已知冪函數(shù)f(x)=(m2﹣5m+7)xm1(m∈R)為偶函數(shù).
(1)求 的值;
(2)若f(2a+1)=f(a),求實(shí)數(shù)a的值.

【答案】
(1)解:由m2﹣5m+7=1得m=2或3,…2

當(dāng)m=2時(shí),f(x)=x3是奇函數(shù),∴不滿足.

當(dāng)m=3時(shí),∴f(x)=x4,滿足題意,…4

∴函數(shù)f(x)的解析式f(x)=x4,所以


(2)解:由f(x)=x4和f(2a+1)=f(a)可得|2a+1|=|a|,…8

即2a+1=a或2a+1=﹣a,∴a=﹣1或


【解析】(1)根據(jù)冪函數(shù)的系數(shù)一定為1可先確定參數(shù)m的值,再根據(jù)奇偶性進(jìn)行驗(yàn)證,可得答案.(2)由(1)知f(x)=x4 , 利用函數(shù)的單調(diào)性及f(2a+1)=f(a)可得|2a+1|=|a|,從而求出a的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x||x+1|<1},B={x|y= ,y∈R},則A∩RB=(
A.(﹣2,1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩個(gè)點(diǎn),其坐標(biāo)分別是, , ,

(1)求, 的標(biāo)準(zhǔn)方程;

(2)是否存在直線滿足條件:①過(guò)的焦點(diǎn);②與交于不同的兩點(diǎn)且滿足?若存在,求出直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),下列結(jié)論中不正確的是( )

A. 的圖象關(guān)于點(diǎn)中心對(duì)稱

B. 的圖象關(guān)于直線對(duì)稱

C. 的最大值為

D. 既是奇函數(shù),又是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x>1},集合B={x|m≤x≤m+3};
(1)當(dāng)m=﹣1時(shí),求A∩B,A∪B;
(2)若BA,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng) 時(shí),討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);

(2)當(dāng)時(shí),如果函數(shù)恰有兩個(gè)不同的極值點(diǎn), ,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= (x2﹣9)的單調(diào)遞增區(qū)間為(
A.(0,+∞)
B.(﹣∞,0)
C.(3,+∞)
D.(﹣∞,﹣3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)f(x)滿足:對(duì)任意x1 , x2∈R,當(dāng)且僅當(dāng)x1=x2時(shí),有f(x1)=f(x2).則f(﹣1)+f(0)+f(1)的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)是定義在R上的奇函數(shù),且 為偶函數(shù),對(duì)于函數(shù)y=f(x)有下列幾種描述,其中描述正確的是( ) ①y=f(x)是周期函數(shù);②x=π是它的一條對(duì)稱軸
③(﹣π,0)是它圖象的一個(gè)對(duì)稱中心;④當(dāng) 時(shí),它一定取最大值

A.①②
B.①③
C.②④
D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案