【題目】軍訓(xùn)時,甲、乙兩名同學(xué)進行射擊比賽,共比賽10場,每場比賽各射擊四次,且用每場擊中環(huán)數(shù)之和作為該場比賽的成績.?dāng)?shù)學(xué)老師將甲、乙兩名同學(xué)的10場比賽成績繪成如圖所示的莖葉圖,并給出下列4個結(jié)論:(1)甲的平均成績比乙的平均成績高;(2)甲的成績的極差是29;(3)乙的成績的眾數(shù)是21;(4)乙的成績的中位數(shù)是18.則這4個結(jié)論中,正確結(jié)論的個數(shù)為(  )

A. 1B. 2C. 3D. 4

【答案】C

【解析】

根據(jù)莖葉圖估計平均數(shù)、極差、眾數(shù)以及中位數(shù),即可判斷選項.

根據(jù)莖葉圖知甲的平均成績大約二十幾,乙的平均成績大約十幾,因此(1)對;

甲的成績的極差是37-8=29,(2)對;乙的成績的眾數(shù)是21,(3)對;乙的成績的中位數(shù)是.(4)錯,選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E,圓C

若過拋物線E的焦點F的直線l與圓C相切,求直線l方程;

的條件下,若直線l交拋物線EA,B兩點,x軸上是否存在點使為坐標(biāo)原點?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正分割成個全等的小正三角形(圖1,圖2分別給出了的情形),在每個三角形的頂點各放置一個數(shù),使位于的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個數(shù)不少于3時)都分別依次成等差數(shù)列,若頂點處的三個數(shù)互不相同且和為1,記所有頂點上的數(shù)的和為,已知,則(用含的式子表達)__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(Ⅱ)當(dāng),即時,函數(shù)上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時,

由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時,函數(shù)上單調(diào)遞減,

所以在區(qū)間上的最小值為.

綜上,當(dāng)時,的最小值為;

當(dāng)時,的最小值為;

當(dāng)時,的最小值為.

型】解答
結(jié)束】
19

【題目】已知拋物線的頂點在原點,焦點在坐標(biāo)軸上,點為拋物線上一點.

1)求的方程;

2)若點上,過的兩弦,若,求證: 直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,,下頂點為為坐標(biāo)原點,點到直線的距離為,為等腰直角三角形.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線與橢圓交于,兩點,若直線與直線的斜率之和為,證明:直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4M為線段AD上一點,AM=2MDNPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界衛(wèi)生組織的最新研究報告顯示,目前中國近視患者人數(shù)多達6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計戶外暴露時間(單位:小時)與近視發(fā)病率的關(guān)系,對某中學(xué)一年級200名學(xué)生進行不記名問卷調(diào)查,得到如下數(shù)據(jù):

每周累積戶外暴露時間(單位:小時)

不少于28小時

近視人數(shù)

21

39

37

2

1

不近視人數(shù)

3

37

52

5

3

(1)在每周累計戶外暴露時間不少于28小時的4名學(xué)生中,隨機抽取2名,求其中恰有一名學(xué)生不近視的概率;

(2)若每周累計戶外暴露時間少于14個小時被認證為“不足夠的戶外暴露時間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯誤的概率不超過0.01的前提下認為不足夠的戶外暴露時間與近視有關(guān)系?

近視

不近視

足夠的戶外暴露時間

不足夠的戶外暴露時間

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點的距離比它到軸的距離大.

1)求動點的軌跡的方程;

2)設(shè)點(為常數(shù)),過點作斜率分別為的兩條直線,交曲線兩點,交曲線兩點,點分別是線段的中點,若,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件分別求出直線l的方程.

1)直線l經(jīng)過A4,1),且橫、縱截距相等;

2)直線l平行于直線3x+4y+170,并且與兩坐標(biāo)軸圍成的三角形的面積為24.

查看答案和解析>>

同步練習(xí)冊答案