已知橢圓方程為=1,橢圓長(zhǎng)軸的左、右頂點(diǎn)分別為A1、A2,P是橢圓上任一點(diǎn),引A1Q⊥A1P,A2Q⊥A2P,且A1Q與A2Q的交點(diǎn)為Q,求點(diǎn)Q的軌跡方程.

思路分析:本題為求點(diǎn)的軌跡方程問(wèn)題,求點(diǎn)的軌跡方程問(wèn)題用一般方法可以求解,直接尋找點(diǎn)的橫、縱坐標(biāo)間的關(guān)系較麻煩,利用參數(shù)方程,尋求橫、縱坐標(biāo)間的間接關(guān)系,然后消去參數(shù)的方法則相對(duì)較簡(jiǎn)單,即消參法求軌跡方程,是求軌跡的一種常用方法.

解:設(shè)橢圓的參數(shù)方程為(θ為參數(shù),且0≤θ<2π).則P點(diǎn)坐標(biāo)為(acosθ,bsinθ),由題意知cosθ≠1,sinθ≠0.

=,=,

=,=.

∴A1Q的方程為y=(x+a),①

A2Q的方程為y=(x-a).②

①×②,得y2=·(x2-a2)=(x2-a2).

化簡(jiǎn)整理,得1(λ≠0),即為所求的軌跡方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知橢圓方程為數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0),O為原點(diǎn),F(xiàn)為右焦點(diǎn),點(diǎn)M是橢圓右準(zhǔn)線l上(除去與x軸的交點(diǎn))的動(dòng)點(diǎn),過(guò)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,則線段ON的長(zhǎng)為


  1. A.
    c
  2. B.
    b
  3. C.
    a
  4. D.
    不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年浙江省溫州市瑞安中學(xué)高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知橢圓方程為+=1,則其離心率為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣西河池市、柳州市、貴港市、欽州市高三1月模擬數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知橢圓方程為+=1(a>b>0),O為原點(diǎn),F(xiàn)為右焦點(diǎn),點(diǎn)M是橢圓右準(zhǔn)線l上(除去與x軸的交點(diǎn))的動(dòng)點(diǎn),過(guò)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,則線段ON的長(zhǎng)為( )
A.c
B.b
C.a(chǎn)
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖北省“黃岡中學(xué)、黃石二中、華師一附中、荊州中學(xué)、孝感高中、襄樊四中、襄樊五中、鄂南高中”八校高三第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知橢圓方程為+=1(a>b>0),O為原點(diǎn),F(xiàn)為右焦點(diǎn),點(diǎn)M是橢圓右準(zhǔn)線l上(除去與x軸的交點(diǎn))的動(dòng)點(diǎn),過(guò)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,則線段ON的長(zhǎng)為( )
A.c
B.b
C.a(chǎn)
D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案