【題目】已知向量 , (m>0,n>0),若m+n∈[1,2],則 的取值范圍是(
A.
B.
C.
D.

【答案】B
【解析】解:根據(jù)題意,向量 , =(3m+n,m﹣3n),
= = ,
令t= ,則 = t,
而m+n∈[1,2],即1≤m+n≤2,在直角坐標系表示如圖,
t= 表示區(qū)域中任意一點與原點(0,0)的距離,
分析可得: ≤t<2,
又由 = t,
<2 ;
故選:B.

根據(jù)題意,由向量的坐標運算公式可得 =(3m+n,m﹣3n),再由向量模的計算公式可得 = ,可以令t= ,將m+n∈[1,2]的關(guān)系在直角坐標系表示出來,分析可得t= 表示區(qū)域中任意一點與原點(0,0)的距離,進而可得t的取值范圍,又由 = t,分析可得答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.

(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價為每平方米150元,AQ段圍墻造價為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點.
(1)求證:平面AED⊥平面A1FD1;
(2)在AE上求一點M,使得A1M⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.

(1)求圓的方程。

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且△的面積最大?若存在,求出點的坐標及對應的△的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1﹣an=2,a1=﹣5,則|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,且.

(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

(Ⅱ)若記為滿足不等式的正整數(shù)的個數(shù),設,求數(shù)列的最大項與最小項的值.

【答案】(1)見解析;(2)最大項為,最小項為.

【解析】試題分析:(Ⅰ)兩邊取倒數(shù),移項即可得出,故而數(shù)列為等差數(shù)列,利用等差數(shù)列的通項公式求出,從而可得出;(Ⅱ)根據(jù)不等式,,得,又,從而,當為奇數(shù)時,單調(diào)遞減,;當為偶數(shù)時單調(diào)遞增,綜上的最大項為,最小項為.

試題解析:(Ⅰ)由于,,則

,則,即為常數(shù)

,∴數(shù)列是以1為首項為公比的等比數(shù)列

從而,.

(Ⅱ),

,從而

為奇數(shù)時,單調(diào)遞減,

為偶數(shù)時,,單調(diào)遞增,

綜上的最大項為,最小項為.

型】解答
結(jié)束】
22

【題目】已知向量, ,若函數(shù)的最小正周期為,且在區(qū)間上單調(diào)遞減.

(Ⅰ)求的解析式;

(Ⅱ)若關(guān)于的方程有實數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P是長軸長為 的橢圓Q: 上異于頂點的一個動點,O為坐標原點,A為橢圓的右頂點,點M為線段PA的中點,且直線PA與OM的斜率之積恒為
(1)求橢圓Q的方程;
(2)設過左焦點F1且不與坐標軸垂直的直線l交橢圓于C,D兩點,線段CD的垂直平分線與x軸交于點G,點G橫坐標的取值范圍是 ,求|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當a=1時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0, )上無零點,求a最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點,且滿足A1E=EC1 , B1F=3FC1
(1)求證:平面AEF⊥平面BB1C1C;
(2)設直三棱柱ABC﹣A1B1C1的棱長均相等,求二面角C1﹣AE﹣B的余弦值.

查看答案和解析>>

同步練習冊答案