【題目】設(shè)函數(shù)f(x)=ax2a–lnxg(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).

(1)討論f(x) 的單調(diào)性;

(2)證明:當(dāng)x>1時,g(x)>0;

(3)如果f(x)>g(x) 在區(qū)間(1,+∞)內(nèi)恒成立,求實數(shù)a的取值范圍.

【答案】(1)見解析;(2)見解析;(3)

【解析】

試題分析:本題考查導(dǎo)數(shù)的計算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,最值、解決恒成立問題,考查學(xué)生的分析問題解決問題的能力和計算能力.第一問,對求導(dǎo),對a進行討論,判斷函數(shù)的單調(diào)性;第二問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,判斷最值,證明結(jié)論,第三問,構(gòu)造函數(shù)= ),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最值,從而證明結(jié)論.

試題解析:(

0內(nèi)單調(diào)遞減.

=0,有.

當(dāng) 時,0,單調(diào)遞減;

當(dāng) 時,0,單調(diào)遞增.

)令=,則=.

當(dāng)時,0,所以,從而=0.

)由(),當(dāng)時,0.

當(dāng),時,=.

故當(dāng)在區(qū)間內(nèi)恒成立時,必有.

當(dāng)時,1.

由()有,從而,

所以此時在區(qū)間內(nèi)不恒成立.

當(dāng)時,令= .

當(dāng)時,= .

因此在區(qū)間單調(diào)遞增.

又因為=0,所以當(dāng)時,= 0,即恒成立.

綜上, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第組中用分層抽樣抽取名學(xué)生進入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機抽取名學(xué)生接受考官進行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域是,,當(dāng)時,.

1)求證:是奇函數(shù);

2)求在區(qū)間上的解析式;

3)是否存在正整數(shù),使得當(dāng)時,不等式有解?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小李大學(xué)畢業(yè)后選擇自主創(chuàng)業(yè),開發(fā)了一種新型電子產(chǎn)品.2019年9月1日投入市場銷售,在9月份的30天內(nèi),前20天每件售價(元)與時間(天,)滿足一次函數(shù)關(guān)系,其中第一天每件售價為63元,第10天每件售價為90元;后10天每件售價均為120元.已知日銷售量(件)與時間(天)之間的函數(shù)關(guān)系是.

(1)寫出該電子產(chǎn)品9月份每件售價(元)與時間(天)的函數(shù)關(guān)系式;

(2)9月份哪一天的日銷售金額最大?并求出最大日銷售金額.(日銷售金額=每件售價日銷售量).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為(

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為,在下一年續(xù)保時實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高具體浮動情況如下表(其中浮動比率是在基準保費上上下浮動):

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮

某機構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況統(tǒng)計得到了下面的表格

類型

數(shù)量

(Ⅰ)求這輛車普通座以下私家車在第四年續(xù)保時保費的平均值(精確到

(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.假設(shè)購進一輛事故車虧損,一輛非事故車盈利且各種投保類型車的頻率與上述機構(gòu)調(diào)查的頻率一致.試完成下列問題:

①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內(nèi)隨機挑選輛車,求這輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進輛車車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價(元)

4

5

6

7

8

9

產(chǎn)品銷量(件)

q

84

83

80

75

68

已知,.

(Ⅰ)求出的值;

(Ⅱ)已知變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程

(Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求“好數(shù)據(jù)”至少有一個的概率.

(參考公式:線性回歸方程中,的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果存在函數(shù)為常數(shù)),使得對函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個線性覆蓋函數(shù).給出如下四個結(jié)論:

①函數(shù)存在線性覆蓋函數(shù);

②對于給定的函數(shù),其線性覆蓋函數(shù)可能不存在,也可能有無數(shù)個;

為函數(shù)的一個線性覆蓋函數(shù)

④若為函數(shù)的一個線性覆蓋函數(shù),則

其中所有正確結(jié)論的序號是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上任意一點到兩焦點距離之和為,離心率為

(1)求橢圓的標(biāo)準方程;

(2)若直線的斜率為,直線與橢圓C交于兩點.點為橢圓上一點,求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案