已知a,b,c均為實數(shù),b2-4ac<0是ax2+bx+c>0的    條件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中的一個).
【答案】分析:根據(jù)類一元二次不等式恒成立的條件與△=b2-4ac<0的關(guān)系,我們分別分析b2-4ac<0⇒ax2+bx+c>0恒成立與ax2+bx+c>0恒成立⇒b2-4ac<0的對錯,然后根據(jù)充要條件的定義即可得到答案.
解答:解:若b2-4ac<0成立,則函數(shù)f(x)=ax2+bx+c的圖象與X軸沒有交點
但當a<0時,ax2+bx+c>0恒成立;
當a=b=0,c>0時,ax2+bx+c>0成立,b2-4ac<0也不一定成立
故b2-4ac<0是ax2+bx+c>0的既不充分也不必要條件
故答案為:既不充分也不必要
點評:本題考查的知識點是充要條件的定義,其中分析b2-4ac<0⇒ax2+bx+c>0恒成立與ax2+bx+c>0恒成立⇒b2-4ac<0的對錯,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實常數(shù),且a≠0),滿足條件f(0)=f(2)=0,且方程f(x)=2x有兩個相等的實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)試確定一個區(qū)間P,使得f(x)在P內(nèi)單調(diào)遞減且不等式f(x)≥0在P內(nèi)恒成立;
(3)是否存在這樣的實數(shù)m、n,滿足m<n,使得f(x)在區(qū)間[m,n]內(nèi)的取值范圍恰好是[4m,4n]?如果存在,試求出m、n的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實常數(shù),且a≠0),滿足條件f(0)=f(2)=0,且方程f(x)=2x有兩個相等的實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)試確定一個區(qū)間P,使得f(x)在P內(nèi)單調(diào)遞減且不等式f(x)≥0在P內(nèi)恒成立;
(3)是否存在這樣的實數(shù)m、n,滿足m<n,使得f(x)在區(qū)間[m,n]內(nèi)的取值范圍恰好是[4m,4n]?如果存在,試求出m、n的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實常數(shù),且a≠0),滿足條件f(0)=f(2)=0,且方程f(x)=2x有兩個相等的實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)試確定一個區(qū)間P,使得f(x)在P內(nèi)單調(diào)遞減且不等式f(x)≥0在P內(nèi)恒成立;
(3)是否存在這樣的實數(shù)m、n,滿足m<n,使得f(x)在區(qū)間[m,n]內(nèi)的取值范圍恰好是[4m,4n]?如果存在,試求出m、n的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕頭市潮陽一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實常數(shù),且a≠0),滿足條件f(0)=f(2)=0,且方程f(x)=2x有兩個相等的實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)試確定一個區(qū)間P,使得f(x)在P內(nèi)單調(diào)遞減且不等式f(x)≥0在P內(nèi)恒成立;
(3)是否存在這樣的實數(shù)m、n,滿足m<n,使得f(x)在區(qū)間[m,n]內(nèi)的取值范圍恰好是[4m,4n]?如果存在,試求出m、n的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北百所重點聯(lián)考文)已知方程的兩個不等實根均大于2,則實數(shù)a的取值范圍為    (    )

    A. B. C.(4,9)  D.(8,9)

查看答案和解析>>

同步練習(xí)冊答案