要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時(shí)截得三種規(guī)格的小鋼板的塊數(shù)如下表所示:
今需A、B、C三種規(guī)格的成品分別為15、18、27塊,問各截這兩種鋼板多少張可得所需三種規(guī)格成品,且使所用的鋼板張數(shù)最少?
答:要截得所需三種規(guī)格的鋼板,且使所截得兩種鋼板的張數(shù)最少的方法有兩種,第一種截法是截第一種鋼板3張,第二種鋼板9張;第二種截法是截第一種鋼板4張,第二種鋼板8張.兩種方法都最少,要截兩種鋼板共12張. 解:設(shè)需要第一種鋼板x張,第二種鋼板y張,鋼板總數(shù)z張,則
目標(biāo)函數(shù)z=x+y. 作出可行域如圖所示,作出直線x+y=0,作出一組平行直線x+y=t(其中t為參數(shù)). 經(jīng)過可行域內(nèi)的點(diǎn)且和原點(diǎn)距離最近的直線,此直線經(jīng)過直線x+3y=27和直線2x+y=15的交點(diǎn)A(,),直線方程為x+y=. 由于和都不是整數(shù),而最優(yōu)解(x,y)中x,y必須都是整數(shù),所以,可行域內(nèi)的點(diǎn)A(,)不是最優(yōu)解. 經(jīng)過可行域內(nèi)的整點(diǎn)(橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)),且與原點(diǎn)距離最近的直線是x+y=12. 經(jīng)過的整點(diǎn)是B(3,9)和C(4,8),它們是最優(yōu)解. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
類 型 | A規(guī)格 | B規(guī)格 | C規(guī)格 |
第一種鋼板 | 1 | 2 | 1 |
第二種鋼板 | 1 | 1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時(shí)截得三種規(guī)格的小鋼板塊數(shù)如下表:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
規(guī)格類型 鋼板類型 |
A |
B |
C |
第一種鋼板 | 2 | 1 | 1 |
第二種鋼板 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
規(guī)格類型 | A規(guī)格 | B規(guī)格 | C規(guī)格 |
鋼板類型 | |||
第一種鋼板 | 2 | 1 | 1 |
第二種鋼板 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆馬鞍山中加雙語學(xué)校高一第二學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時(shí)截得三種規(guī)格小鋼板的塊數(shù)如下表所示:
類 型 |
A規(guī)格 |
B規(guī)格 |
C規(guī)格 |
第一種鋼板 |
1 |
2 |
1 |
第二種鋼板 |
1 |
1 |
3 |
每張鋼板的面積,第一種為,第二種為,今需要A、B、C三種規(guī)格的成品各12、15、27塊,問各截這兩種鋼板多少張,可得所需三種規(guī)格成品,且使所用鋼板面積最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com