已知函數(shù),曲線在點(diǎn)處切線方程為.
(1)求的值;
(2)討論的單調(diào)性,并求的極大值.

(1);(2)單調(diào)遞增,在單調(diào)遞減,極大值為.

解析試題分析:本題考查導(dǎo)數(shù)的運(yùn)算以及利用導(dǎo)數(shù)研究曲線的切線方程、函數(shù)的單調(diào)性和極值等數(shù)學(xué)知識,考查綜合運(yùn)用數(shù)學(xué)知識和方法分析問題解決問題的能力.第一問,對求導(dǎo),利用已知列出斜率和切點(diǎn)縱坐標(biāo)的方程,解出的值;第二問,利用第一問的的值,寫出解析式,對它求導(dǎo),令解出單調(diào)增區(qū)間,令,解出單調(diào)減區(qū)間,通過單調(diào)區(qū)間判斷在處取得極大值,將代入到中求出極大值.
試題解析: (Ⅰ),由已知得,故,
從而.
(II) 由(I)知, 
  
得,,
從而當(dāng)時,;當(dāng)時,.
,單調(diào)遞增,在單調(diào)遞減.
當(dāng)時,函數(shù)取得極大值,極大值為.
考點(diǎn):1.利用導(dǎo)數(shù)求曲線的切線;2.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;3.利用導(dǎo)數(shù)求函數(shù)的極值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若,使)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個極值點(diǎn),且,記分別為的極大值和極小值,令,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算下列定積分.
(1)                       (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時,函數(shù)取得極值,求的值;
(2)當(dāng)時,求函數(shù)在區(qū)間[1,2]上的最大值;
(3)當(dāng)時,關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)上的圖像與直線恒有兩個不同交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,證明當(dāng)時,函數(shù)的圖象恒在函數(shù)圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)試討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,若對任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)求證:.

查看答案和解析>>

同步練習(xí)冊答案