【題目】某企業(yè)人力資源部為了研究企業(yè)員工工作積極性和對待企業(yè)改革態(tài)度的關系,隨機抽取了72名員工進行調(diào)查,所得的數(shù)據(jù)如表所示:

積極支持改革

不太支持改革

工作積極

28

8

36

工作一般

16

20

36

44

28

72

對于人力資源部的研究項目,根據(jù)上述數(shù)據(jù)能得出的結論是
(參考公式與數(shù)據(jù): .當Χ2>3.841時,有95%的把握說事件A與B有關;當Χ2>6.635時,有99%的把握說事件A與B有關; 當Χ2<3.841時認為事件A與B無關.)(
A.有99%的把握說事件A與B有關
B.有95%的把握說事件A與B有關
C.有90%的把握說事件A與B有關
D.事件A與B無關

【答案】A
【解析】解:提出假設:企業(yè)的全體員工對待企業(yè)改革的態(tài)度與其工作積極性無關 求得Χ2= ≈8.416>6.635
所以有99%的把握說抽樣員工對待企業(yè)改革的態(tài)度與工作積極性有關,從而認為企業(yè)的全體員工對待企業(yè)改革的態(tài)度與其工作積極性有關.
故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

() 證明:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log4(ax2﹣4x+a)(a∈R),若f(x)的值域為R,則實數(shù)a的取值范圍是(
A.[0,2]
B.(2,+∞)
C.(0,2]
D.(﹣2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對一切正實數(shù)x,t,不等式 ﹣cos2x≥asinx﹣ 都成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,己知棱長為a,M,N分別是BD和AD的中點,則B1M與D1N所成角的余弦值為(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)對一切實數(shù)x,y均有f(x+y)﹣f(y)=(x+2y+2)x成立,且f(2)=12.
(1)求f(0)的值;
(2)在(1,4)上存在x0∈R,使得f(x0)﹣8=ax0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為上的函數(shù),如果同時滿足下列三條:

(1)對任意的,總有;(2)若, ,都有 成立;

(3)若,則.則稱函數(shù)為超級囧函數(shù).

則下列是超級囧函數(shù)的為_____________________.

(1);(2);(3);(4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,函數(shù)值域為(0,+∞)的是(
A.y=(x+1)2 , x∈(0,+∞)
B.y=log x,x∈(1,+∞)
C.y=2x1
D.y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案