10.與$\frac{π}{3}$終邊相同的角的集合是{α|α=2kπ+$\frac{π}{3}$,k∈Z}.

分析 終邊相同的角相差了2π的整數(shù)倍,從而寫出結(jié)果即可.

解答 解:終邊相同的角相差了2π的整數(shù)倍,
設(shè)與$\frac{π}{3}$角的終邊相同的角是α,則與$\frac{π}{3}$終邊相同的角的集合是:{α|α=2kπ+$\frac{π}{3}$,k∈Z}.
故答案為:{α|α=2kπ+$\frac{π}{3}$,k∈Z}.

點(diǎn)評 本題考查終邊相同的角的概念及終邊相同的角的表示形式,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0),以原點(diǎn)為圓心,雙曲線的實(shí)半軸長為半徑長的圓與雙曲線的兩條漸近線相交于A,B,C,D四點(diǎn),四邊形ABCD的面積為2b,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{4{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.{an}中,a1=1,an+1=$\frac{3{a}_{n}}{{a}_{n}+3}$,證明{$\frac{1}{{a}_{n}}$}是等差數(shù)列,并求{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)P(sinθ-cosθ,sinθ+cosθ)在第一象限,則在[0,2π)內(nèi)θ的取值范圍是(  )
A.($\frac{π}{2}$,$\frac{3π}{4}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.($\frac{3π}{4}$,$\frac{5π}{4}$)D.($\frac{5π}{4}$,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)a,b∈R,c∈[0,2π),若對于任意實(shí)數(shù)x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),則滿足條件的有序?qū)崝?shù)組(a,b,c)的組數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若兩個(gè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為An、Bn,且滿足$\frac{A_n}{B_n}=\frac{4n+2}{5n-5}$,則$\frac{{a}_{13}}{_{13}}$的值為( 。
A.$\frac{51}{60}$B.$\frac{60}{51}$C.$\frac{19}{20}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,a,b,c分別是角A,B,C的對邊,且sin(A+$\frac{π}{3}$)=4sin$\frac{A}{2}$cos$\frac{A}{2}$.
(Ⅰ)求角A的大。
(Ⅱ)若sinB=$\sqrt{3}$sinC,a=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.
(Ⅰ)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;
(Ⅱ)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列極坐標(biāo)方程中,對應(yīng)的曲線為如圖所示的是(  )
A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6-5cosθD.ρ=6-5sinθ

查看答案和解析>>

同步練習(xí)冊答案