分析 (1)利用公差d=$\frac{{a}_{4}-{a}_{1}}{3-1}$計(jì)算即得結(jié)論;
(2)通過(guò)(1)分1≤n≤5、n>5兩種情況討論即可.
解答 解:(1)∵a1=8,a4=2,
∴公差d=$\frac{{a}_{4}-{a}_{1}}{3-1}$=$\frac{2-8}{3}$=-2,
∴數(shù)列{an}的通項(xiàng)公式an=a1+(n-1)d=8-2(n-1)=-2n+10;
(2)由(1)可知當(dāng)n=5時(shí)an=0,當(dāng)1≤n<5時(shí)an>0,當(dāng)n>5時(shí)an<0,
且數(shù)列{an}的前n項(xiàng)和Tn=$\frac{n(8-2n+10)}{2}$=-n2+9n,
∴當(dāng)1≤n≤5時(shí),Sn=Tn=-n2+9n;
當(dāng)n>5時(shí),Sn=-Tn+2T5=n2-9n+2(-25+45)=n2-9n+40;
綜上所述,Sn=$\left\{\begin{array}{l}{-{n}^{2}+9n,}&{1≤n≤5}\\{{n}^{2}-9n+40,}&{n>5}\end{array}\right.$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查分類討論的思想,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,2) | B. | (-2,-2) | C. | (8,-2) | D. | (4,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com