【題目】不等式對任意實數(shù)都成立,則實數(shù)的取值范圍_________

【答案】

【解析】

根據(jù)題意,分2種情況討論:1°若a210,則a=±1,分別驗證a1或﹣1時,是否能保證該不等式滿足對任意實數(shù)x都成立,

2°若a210,不等式(a21x2+a1x10為二次不等式,結合二次函數(shù)的性質(zhì),解可得此時a的范圍,綜合可得答案.

根據(jù)題意,分2種情況討論:

1°若a210,則a=±1

a1時,不等式(a21x2+a1x10為:﹣10,

滿足對任意實數(shù)x都成立,則a1滿足題意,

a=﹣1時,不等式(a21x2+a1x10為:﹣2x0

不滿足對任意實數(shù)x都成立,則a=﹣1不滿足題意,

2°若a210,不等式(a21x2+a1x10為二次不等式,

要保證(a21x2+a1x10對任意實數(shù)x都成立,

必須有,

解可得:a1,

綜合可得a1

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)場有一塊等腰直角三角形的空地,其中斜邊的長度為400.為迎接“五一”觀光游,欲在邊界上選擇一點,修建觀賞小徑,其中分別在邊界上,小徑與邊界的夾角都為.區(qū)域和區(qū)域內(nèi)種植郁金香,區(qū)域內(nèi)種植月季花.

1)探究:觀賞小徑的長度之和是否為定值?請說明理由;

2)為深度體驗觀賞,準備在月季花區(qū)域內(nèi)修建小徑,當點在何處時,三條小徑的長度和最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求不等式的解集;

(2)若不等式的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個動點到點的距離比到直線的距離多1.

(1)求動點的軌跡的方程;

(2)若過點的直線與曲線交于兩點,且線段中點是點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求不等式的解集;

(2)若不等式的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對函數(shù)f(x)xsinx,現(xiàn)有下列命題:函數(shù)f(x)是偶函數(shù);函數(shù)f(x)的最小正周期是,0)是函數(shù)f(x)的圖象的一個對稱中心;函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.其中是真命題的是________(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車是碳排放量比較大的交通工具,某地規(guī)定,從2017年開始,將對二氧化碳排放量超過130 g/km的輕型汽車進行懲罰性征稅,檢測單位對甲、乙兩品牌輕型汽車各抽取5輛進行二氧化碳排放量檢測,記錄如下(單位:g/km):

80

110

120

140

150

100

120

x

100

160

經(jīng)測算得乙品牌輕型汽車二氧化碳排放量的平均值為=120 g/km.

(1)求表中x的值,并比較甲、乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性;

(2)從被檢測的5輛甲品牌輕型汽車中任取2輛,則至少有一輛二氧化碳排放量超過130 g/km的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018屆安徽省合肥市高三第一次教學質(zhì)量檢測】一家大型購物商場委托某機構調(diào)查該商場的顧客使用移動支付的情況.調(diào)查人員從年齡在內(nèi)的顧客中,隨機抽取了180人,調(diào)查結果如表:

1)為推廣移動支付,商場準備對使用移動支付的顧客贈送1個環(huán)保購物袋.若某日該商場預計有12000人購物,試根據(jù)上述數(shù)據(jù)估計,該商場當天應準備多少個環(huán)保購物袋?

2)某機構從被調(diào)查的使用移動支付的顧客中,按分層抽樣的方式抽取7人作跟蹤調(diào)查,并給其中2人贈送額外禮品,求獲得額外禮品的2人年齡都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點的直線軸正半軸和軸正半軸分別交于,

1)當的中點時,求的方程

2)當最小時,求的方程

3)當面積取到最小值時,求的方程

查看答案和解析>>

同步練習冊答案