【答案】
分析:根據(jù)題意,依次分析所給的命題:對(duì)于①,用特殊值法,將x=-2代入f(x+4)=f(x)+f(2)中,中,變形可得f(-2)=0,結(jié)合函數(shù)的奇偶性可得f(2)=f(-2)=0,進(jìn)而將f(2)=0代入f(x+4)=f(x)+f(2)中,可得f(x+4)=f(x),符合函數(shù)周期性的定義,綜合可得①正確;對(duì)于②,結(jié)合①的結(jié)論可得f(x)是以4為周期的函數(shù),結(jié)合函數(shù)的奇偶性,分析可得直線x=4也是函數(shù)y=f(x)的一條對(duì)稱軸,可得②正確;對(duì)于③,由題意可得f(x)在[0,2]上為單調(diào)增函數(shù),結(jié)合函數(shù)是偶函數(shù),可得f(x)在[-2,0]上為減函數(shù),又由f(x)的周期性,分析函數(shù)y=f(x)在區(qū)間[-6,-4]的單調(diào)性可得③錯(cuò)誤;對(duì)于④,由①可得,f(2)=f(-2)=0,又由f(x)是以4為周期的函數(shù),則f(-6)=f(6)=0,即函數(shù)y=f(x)在區(qū)間[-6,6]上有四個(gè)零點(diǎn),④正確;綜合可得答案.
解答:解:根據(jù)題意,依次分析命題,
對(duì)于①,在f(x+4)=f(x)+f(2)中,令x=-2可得,f(2)=f(-2)+f(2),即f(-2)=0,
又由函數(shù)y=f(x)是R上偶函數(shù),則f(2)=f(-2)=0,
而f(x+4)=f(x)+f(2),則有f(x+4)=f(x),
即f(x)是以4為周期的函數(shù),
則①正確;
對(duì)于②,由①可得f(x)是以4為周期的函數(shù),
又由函數(shù)y=f(x)是R上偶函數(shù),即f(x)的一條對(duì)稱軸為y軸,即x=0,
則直線x=4也是函數(shù)y=f(x)的一條對(duì)稱軸,②正確;
對(duì)于③,由當(dāng)x
1,x
2∈[0,2],都有
>0,可得f(x)在[0,2]上為單調(diào)增函數(shù),
又由函數(shù)y=f(x)是R上偶函數(shù),則f(x)在[-2,0]上為減函數(shù),
又由f(x)是以4為周期的函數(shù),則函數(shù)y=f(x)在區(qū)間[-6,-4]上為減函數(shù),③錯(cuò)誤;
對(duì)于④,由①可得,f(2)=f(-2)=0,
又由f(x)是以4為周期的函數(shù),則f(-6)=f(-2)=0,f(4)=f(2)=0,
即函數(shù)y=f(x)在區(qū)間[-6,6]上有四個(gè)零點(diǎn),④正確;
正確的命題為①②④;
故選D.
點(diǎn)評(píng):本題考查抽象函數(shù)的應(yīng)用,涉及函數(shù)奇偶性,單調(diào)性的判斷與應(yīng)用;關(guān)鍵是根據(jù)題意,運(yùn)用特殊值法,分析得到f(x)的周期性、單調(diào)性以及f(2)的值.