關于直線
、
與平面
、
,有下列四個命題:
①
且
,則
; ②
且
,則
;
③
且
,則
; ④
且
,則
.
其中正確命題的個數(shù)是( )
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)如圖所示,在四棱臺
中, 底面ABCD是正方形,且
底面
,
.
(1)求異面直線
與
所成角的余弦值;
(2)試在平面
中確定一個點
,使得
平面
;
(3)在(2)的條件下,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)如圖,在棱長為ɑ的正方體ABCD-A
1B
1C
1D
1中,E、F、G分別是CB、CD、CC
1的中點.
(1)求證:平面A B
1D
1∥平面EFG;
(2)求證:平面AA
1C⊥面EFG .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分6分)
(如圖)在底面半徑為2母線長為4的圓錐中內(nèi)接一個高為
的圓柱,求圓柱的表面積
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)
已知四棱錐P—ABCD的底面為直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中點。
(I)求AC與PB所
成角的余弦值;
(II)求面AMC與面BMC所成二面角的余弦值的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
直三棱柱ABO-A
1B
1O
1中,∠AOB=90°,D為AB的中點,AO=BO=BB
1=2.
①求證:BO
1⊥AB
1;
②求證:BO
1∥平面OA
1D;
③求三棱錐B—A
1OD的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖(1)在正方形
中,E、F分別是邊
、
的中點,沿SE、SF及EF把這個正方形折成一個幾何體如圖(2),使
三點重合于G, 下面結論成立的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
三棱錐A-BCD中,BA
AD,BC
CD,且AB=1,AD=
,則此三棱錐外接球的體積為
查看答案和解析>>