分析 (1)直線(xiàn)l方程為x+ay-a=0,由直線(xiàn)l與圓${x}^{2}+{y}^{2}=\frac{2}{3}$相切,求出a2=2,由此能求出橢圓C的方程.
(2)當(dāng)直線(xiàn)AB的斜率不存在時(shí),設(shè)A(x0,y0),則B(x0,-y0),由k1+k2=2,得x0=-1,當(dāng)直線(xiàn)AB的斜率存在時(shí),設(shè)AB的方程為y=kx+m(m≠1),A(x1,y1),B(x2,y2),聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-2=0,由此利用韋達(dá)定理、斜率公式能證明AB過(guò)定點(diǎn)(-1,-1).
解答 解:(1)∵直線(xiàn)l過(guò)點(diǎn)(a,0),(0,1),
∴直線(xiàn)l方程為x+ay-a=0,
∵直線(xiàn)l與圓${x}^{2}+{y}^{2}=\frac{2}{3}$相切,∴$\frac{a}{\sqrt{1+{a}^{2}}}$=$\frac{\sqrt{6}}{3}$,
解得a2=2,
∴橢圓C的方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(2)當(dāng)直線(xiàn)AB的斜率不存在時(shí),設(shè)A(x0,y0),則B(x0,-y0),
由k1+k2=2,得$\frac{{y}_{0}-1}{{x}_{0}}$+$\frac{-{y}_{0}-1}{{x}_{0}}$=2,
解得x0=-1,
當(dāng)直線(xiàn)AB的斜率存在時(shí),設(shè)AB的方程為y=kx+m(m≠1),
A(x1,y1),B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-2=0,
${x}_{1}+{x}_{2}=\frac{-4km}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
∵k1+k2=2,
∴$\frac{{y}_{1}-1}{{x}_{1}}+\frac{{y}_{2}-1}{{x}_{2}}$=2,∴$\frac{(k{x}_{2}+m-1)+(k{x}_{2}+m-1)}{{x}_{1}{x}_{2}}=2$,
∴(2-2k)${x}_{1}{{x}_{2}}^{\;}$=(m-1)(x2+x1),
∴(2-2k)(2m2-2)=(m-1)(-4km),
由m≠1,(1-k)(m+1)=-km,得k=m+1,
∴y=kx+m=(m+1)x+m,
∴m(x+1)=y-x,
∴AB過(guò)定點(diǎn)(-1,-1).
點(diǎn)評(píng) 本題考查橢圓方程的求法,考查直線(xiàn)過(guò)定點(diǎn)的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理、斜率公式、直線(xiàn)方程、橢圓性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | -8 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com