18.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2n2-n,則數(shù)列{a2n}的前10項(xiàng)和等于(  )
A.380B.390C.400D.410

分析 Sn=2n2-n,n≥2時(shí),an=Sn-Sn-1.n=1時(shí),a1=S1=1,可得an,進(jìn)而達(dá)到a2n.再利用求和公式即可得出.

解答 解:Sn=2n2-n,n≥2時(shí),an=Sn-Sn-1=2n2-n-[2(n-1)2-(n-1)]=4n-3.
n=1時(shí),a1=S1=1,對(duì)于上式也成立.
∴an=4n-3.
∴a2n=8n-3.
則數(shù)列{a2n}的前10項(xiàng)和等于=$\frac{10×(5+8×10-3)}{2}$=410.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給定兩個(gè)長(zhǎng)度為1的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它們的夾角為90°.點(diǎn)C在以O(shè)為圓心的圓弧$\widehat{AB}$上變動(dòng),若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,則xy的范圍是( 。
A.(0,1)B.[0,1]C.$({0,\frac{1}{2}})$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列說法中:
(1)函數(shù)f(x)=$\frac{1}{x}$在其定義域內(nèi)單調(diào)遞減     
(2)若a>b>0,則a-$\frac{1}{a}>b-\frac{1}$;
(3)若a>0,b>0且2a+b=1,則$\frac{2}{a}+\frac{1}$的最小值為9
(4)函數(shù)f(x)=$\frac{ax+1}{x+2}$在(-2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是$(\frac{1}{2},+∞)$;
(5)已知a,b,c是實(shí)數(shù),關(guān)于x的不等式ax2+bx+c≤0的解集是空集的充要條件是a>0且△≤0;
正確的序號(hào)為為(2),(3),(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=f(x)在[0,+∞)上是遞減函數(shù),則f($\frac{3}{4}$)≥f(a2-a+1)(填“≥”“≤”“>”“<”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.各項(xiàng)為正的數(shù)列{an}滿足${a_1}=\frac{1}{2},{a_{n+1}}=\frac{{{a_n}^2}}{λ}+{a_n}(n∈{N^*})$,
(1)當(dāng)λ=an+1時(shí),求證:數(shù)列{an}是等比數(shù)列,并求其公比;
(2)當(dāng)λ=2時(shí),令${b_n}=\frac{1}{{{a_n}+2}}$,記數(shù)列{bn}的前n項(xiàng)和為Sn,數(shù)列{bn}的前n項(xiàng)之積為Tn
求證:對(duì)任意正整數(shù)n,2n+1Tn+Sn為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|1≤x≤3},B={x|log2x>1}.
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且滿足a2017+a2018=π,$_{20}^{2}$=4,則tan$\frac{{a}_{2}+{a}_{4033}}{_{1}_{39}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x∈(0,+∞),sinx=x+$\frac{1}{x}$,命題q:?x∈R,πx<1,則下列為真命題的是(  )
A.p∧(?q)B.(?p)∧(?q)C.(?p)∧qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.$若f(x)=\left\{{\begin{array}{l}{\sqrt{x},x≥0}\\{1+{x^2},x<0}\end{array}}\right.$,則f′(1)•f′(-1)=( 。
A.-2B.-3C.-1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案